4
Tetrahedron
Inamoto, K.; Shigehisa, H.; Sakamoto, T. Heterocycles 2017, 95,
920–933; (h) Chen, J.; Han, X.; Lu, X. J. Org. Chem. 2017, 82,
1977–1985; (i) Yu, J.; Zhang-Negrerie, D.; Du, Y. Org. Lett.
2016, 18, 3322–3325; (j) Ho, H. E.; Oniwa, K.; Yamamoto, Y.;
Jin, T. Org. Lett. 2016, 18, 2487–2490; (k) Hu, Z.; Tong, X.; Liu,
G. Org. Lett. 2016, 18, 2058–2061; (l) Allegretti, P. A.; Huynh, K.;
Ozumerzifon, T. J.; Ferreira, E. M. Org. Lett. 2016, 18, 64–67;
(m) Michalska, M.; Grela, K. Synlett 2016, 27, 599–603; (n) Song,
S.; Huang, M.; Li,W.; Zhu, X.; Wan, Y. Tetrahedron 2015, 71,
451–456; (o) Gao, J.; Shao, Y.; Zhu, J.; Zhu, J.; Mao, H.; Wang,
X.; Lv, X. J. Org. Chem. 2014, 79, 9000–9008; (p) Kumaran, E.;
Leong, W. K. Tetrahedron Lett. 2014, 55, 5495–5498; (q)
McNulty, J.; Keskar, K. Eur. J. Org. Chem. 2014, 8, 1622–1629;
(r) Perea-Buceta, J. E.; Wirtanen, T.; Laukkanen, O.-V.; Mäkelä,
M. K.; Nieger, M.; Melchionna, M.; Huittinen, N.; Lopez-
Sanchez, J. A.; Helaja, Angew. Chem. Int. Ed. 2013, 52, 11835–
11839; (s) Boyer, A.; Isono, N.; Lackner, S.; Lautens, M.
Tetrahedron 2010, 66, 6468–6482; (t) Li, X.; Wang, J.-Y.; Yu,
W.; Wu, L.-M. Tetrahedron 2009, 65, 1140–1146; (u) Sakai, N.;
Annaka, K.; Fujita, A.; Sato, A.; Konakahara, T. J. Org. Chem.
2008, 73, 4160–4165.
(a) Chen, Z.; Shi, X.-X.; Ge, D.-Q.; Jiang, Z.-Z.; Jin, Q.-Q.; Jiang,
H.-J.; Wu, J.-S. Chin. Chem. Lett. 2017, 28, 231–234; (b) Chen,
Y.-Y.; Chen, J.-H.; Zhang, N.-N.; Ye, L.-M.; Zhang, X.-J.; Yan,
M. Tetrahedron Lett. 2015, 56, 478–481; (c) Li, D. Y.; Shi, K. J.;
Mao, X. F.; Zhao, Z. L.; Wu, X. Y.; Liu, P. N. Terahedron 2014,
70, 7022–7031; (d) Inamoto, K.; Asano, N.; Nakamura, Y.;
Yonemoto, M.; Kondo, Y. Org. Lett. 2012, 14, 2622–2625; (e)
Sanz, R.; Guilarte, V.; Castroviejo, M. P. Synlett 2008, 19, 3006–
3010; (f) McLaughlin, M.; Palucki, M.; Davies, I. W. Org. Lett.
2006, 8, 3307–3310; (g) Dai, W.-M.; Gou, D.-S.; Sun, L.-P.
Tetrahedron Lett. 2001, 42, 5275–5278; (h) Rodriguez, A. L.;
Koradin, C.; Dohle, W.; Knochel, P. Angew. Chem. Int. Ed. 2000,
39, 2488–2490; (i) Sakamoto, T.; Kondo, Y.; Iwashita, S.;
Nagano, T.; Yamanaka, H. Chem. Pharm. Bull. 1988, 36, 1305–
1308.
Figure 4. Hirshfeld surface for 2a and 2c. Vicinal molecules
associated with close contacts are shown.
In conclusion, a green strategy has been developed for facile
and efficient synthesis of indoles by the CuMgAl-LDH-mediated
cyclization of 2-alkynylsulfonanilides in quantitative yields. The
CuMgAl-LDH catalyst possesses dual-activation and recycling
features. This work may contribute to easily building indole
libraries.
7.
Acknowledgments
We are grateful for the financial support from the National
Natural Science Foundation of China (No. 21372147).
Supplementary data
Supplementary data (ESI) available: Experimental procedures,
powder XRD, TEM, FT-IR, SEM, NMR spectra, HR-MS, X-ray
crystallography, and Hirshfeld surface analysis can be found in
ESI. Crystallographic data for the structures 2a, 2c and 2f have
been deposited with the Cambridge Crystallography Data Centre
(CCDC No. 1849708, 1849710 and 1849709, respectively).
8.
(a) De Nisi, A.; Sierra, S.; Ferrara, M.; Monari, M.; Bandini, M.
Org. Chem. Front. 2017, 4, 1849–1853; (b) Raúl, B.-M.-S.;
Mariana, F.-J.; Alejandro, A.-H. Arkivoc 2016, 3, 36–47; (c)
Suzuki, N.; Yasaki, S.; Yasuhara, A.; Sakamoto, T. Chem. Pharm.
Bull. 2003, 51, 1170–1173; (d) Yasuhara, A.; Suzuki, N.;
Yoshino, T.; Takeda, Y.; Sakamoto, T. Tetrahedron Lett. 2002,
43, 6579–6582; (e) Yasuhara, A.; Kanamori, Y.; Kaneko, M.;
Numata, A.; Kondo, Y.; Sakamoto, T. J. Chem. Soc., Perkin
Trans. 1 1999, 529–534.
References and notes
1.
2.
(a) Almagro, L.; Fernández-Pérez, F.; Pedreño, M. A. Molecules
2015, 20, 2973–3000; (b) Shiri, M. Chem. Rev. 2012, 112, 3508–
3549; (c) Krüger, K.; Tillack, A.; Beller, M. Adv. Synth. Catal.
2008, 350, 2153–2167; (d) Humphrey, G. R.; Kuethe, J. T. Chem.
Rev. 2006, 106, 2875–2911; (e) Cacchi, S.; Fabrizi, G. Chem. Rev.
2005, 105, 2873–2920; (f) Somei, M.; Yamada, F. Nat. Prod. Rep.
2004, 21, 278–311; (g) Lounasmaa, M.; Tolvanen, A. Nat. Prod.
Rep. 2000, 17, 175–191.
(a) Sravanthi, T. V.; Manju, S. L. Eur. J. Pharm. Sci. 2016, 91, 1–
10; (b) Castellino, S.; Groseclose, M. R.; Sigafoos, J.; Wagner, D.;
Serres, M.; Polli, J. W.; Romach, E.; Myer, J.; Hamilton, B. Chem.
Res. Toxicol. 2013, 26, 241–251; (c) Leneva, I. A.; Russell, R. J.;
Boriskin, Y. S.; Hay, A. J. Antiviral Res. 2009, 81, 132–140; (d)
Biskobing, D. M. Clin. Interventions Aging 2007, 2, 299–303; (e)
Deschenes, R. J.; Lin, H.; Ault, A. D.; Fassler, J. S. Antimicrob.
Agents Chemother. 1999, 43, 1700–1703.
9.
Sakurai, Y. Heterocycles 2017, 94, 1322–1336.
10. (a) Yuan, K.; Wang, S. Org. Lett. 2017, 19, 1462–1465; (b) Yue,
D.; Yao, T.; Larock, R. C. J. Org. Chem. 2006, 71, 62–69; (c)
Amjad, M.; Knight, D. W. Tetrahedron Lett. 2004, 45, 539–541;
(d) Yue, D.; Larock, R. C. Org. Lett. 2004, 6, 1037–1040.
11. (a) Li, B.; Guo, S.; Zhang, J.; Zhang, X.; Fan, X. J. Org. Chem.
2015, 80, 5444-5456; (b) Sha, Q.; Arman, H.; Doyle, M. P. Org.
Lett. 2015, 17, 3876–3879; (c) Matcha, K. Antonchick, A. P.
Angew. Chem. Int. Ed. 2014, 53, 11960-11964; (d) Ohta, Y.;
Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2009, 74,
7052–7058.
12. (a) Li, T.; Miras, H. N.; Song, Y.-F. Catalysts 2017, 7, 260; (b)
Geng, F.; Ma, R.; Sasaki, T. Acc. Chem. Res. 2010, 43, 1177–
1185; (c) Cavani, F.; Trifirò, F.; Vaccari, A. Catal. Today 1991,
11, 173–301.
13. (a) Daud, M.; Kamal, M. S.; Shehzad, F.; Al-Harthi, M. A.
Carbon 2016, 104, 241–252; (b) Li, C.; Wei, M.; Evans, D. G.;
Duan, X. Small 2014, 10, 4469–4486; (c) Fan, G.; Li, F.; Evans,
D. G.; Duan, X. Chem. Soc. Rev. 2014, 43, 7040–7066; (d) He, S.;
An, Z.; Wei, M.; Evans, D. G.; Duan, X. Chem. Commun. 2013,
49, 5912–5920; (e) Wang, Q.; O’Hare, D. Chem. Rev. 2012, 112,
4124–4155; (f) Xu, Z. P.; Zhang, J.; Adebajo, M. O.; Zhang, H.;
Zhou, C. Appl. Clay Sci. 2011, 53, 139–150.
3.
4.
Fischer, E.; Jourdan, F. Ber. Dtsch. Chem. Ges. 1883, 16, 2241–
2245.
(a) Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. Tetrahedron
Lett. 1989, 30, 2129–2132; (b) Clark, R. D.; Repke, D. B.
Heterocycles 1984, 22, 195–221; (c) Gassman, P. G.; Bergen, T. J.
V.; Gruetzmacher, G. J. Am. Chem. Soc. 1973, 95, 65086509.
(a) Xu, J.; Wipf, P. Org. Biomol. Chem. 2017, 15, 7093–7096; (b)
Wang, J.-B.; Li, Y.-L.; Deng, J. Adv. Synth. Catal. 2017, 359,
3460–3467; (c) Hu, Z.; Luo, S.; Zhu, Q. Adv. Synth. Catal. 2015,
357, 1060–1064.
(a) Acerbi, A.; Carfagna, C.; Costa, M., Mancuso, R.; Gabriele,
B.; Della Caˊ, N. Chem. Eur. J. 2018, 24, 4835–4840; (b) Yuan,
K.; Liu, L.; Chen, J.; Guo, S.; Yao, H.; Lin, A. Org. Lett. 2018,
20, 3477–3481; (c) Ye, Y.; Cheung, K. P. S.; He, L.; Tsui, G. C.
Org. Lett. 2018, 20, 1676–1679; (d) Huang, Y.; Guo, Z.; Song, H.;
Liu, Y.; Wang, Q. Chem. Commun. 2018, 54, 7143–7146; (e) Li,
Y.-J.; Yan, N.; Liu, C.-H.; Yu, Y.; Zhao, Y.-L. Org. Lett. 2017,
19, 1160–1163; (f) Chio, S.; Srinivasulu, V.; Ha, S.; Park, C.-M.
Chem. Commun. 2017, 53, 3481–3484; (g) Hiroya, H.; Itoh, S.;
5.
6.
14. (a) Hernández, W. Y.; Lauwaert, J.; Van Der Voort, P.;
Verberckmoes, A. Green Chem. 2017, 19, 5269–5302; (b) Cui, G.;
Wang, F.; He, S.; Wei, M. RSC Adv. 2016, 6, 105406–105411; (c)
Pillai, U. R.; Sahle-Demessie, E. J. Mol. Catal. A-Chem. 2003,
191, 93–100; (d) Climent, M. J.; Corma, A.; Iborra, S.; Velty, A.
Catal. Lett. 2002, 79, 157–163.
15. Zhao, Y.; Li, F.; Zhang, R.; Evans, D. G.; Duan, X. Chem. Mater.
2002, 14, 4286–4291.