Chemistry Letters 2002
269
Dedicated to Prof. Teruaki Mukaiyama on the occasion of his
75th birthday.
References and Notes
1
a) R. Schmutzler, Inorg. Synth., 9, 63 (1963). b) R. Schmutzler, Angew.
Chem., Int. Ed. Engl., 4, 496 (1965). c) D. Hellwinkel, in ‘‘Organic
Phosphorus Compounds,’’ ed. by G. M. Kosolapoff and L. Mailer, John
Wiley & Sons, New York (1972), Vol. 3, Chap. 5B, p 185.
H. Schmidbaur, K.-H. Mitshke, and J. Weidlein, Angew. Chem., Int. Ed.
Engl., 11, 144 (1972).
2
3
J. Breker, P. G. Jones, and R. Schmutzler, Phosphorus, Sulfur Silicon Relat.
Elem., 62, 139 (1991).
4
5
K. I. The and R. G. Cavell, J. Chem. Soc., Chem. Commun., 1975, 279.
A. A. Kolomeitsev, Y. L. Yagupolskij, A. Gentzsch, E. Lork, and G.-V.
Figure 1. ORTEP drawing of 3 with thermal ellipsoid
ꢀ
plot (30% probability). Selected bond lengths (A) and
Roschenthaler, Phosphorus, Sulfur Silicon Relat. Elem., 92, 179 (1994).
¨
6
E. F. Perozzi, R. S. Michalak, G. D. Figuly, W. H. Stevenson, III, D. B.
Dess, M. R. Ross, and J. C. Martin, J. Org. Chem., 46, 1049 (1981).
H. C. Brown, B. Singaram, and J. R. Schwier, Inorg. Chem. 18, 51 (1979).
3: colorless crystals, mp 129.6–132.0 ꢂC (dec.); 1H NMR (500 MHz, CDCl3)
bond angles (deg): P(1)–F(1) 1.647(3), P1–O(1)
1.767(3), P(1)–C(1) 1.835(5), P(1)–C(2) 1.815(5),
P(1)–S(1) 2.092(2), O(1)–P(1)–F(1) 179.2(1), O(1)–
P(1)–C(1) 89.3(2), O(1)–P(1)–C(2) 87.4(2), O(1)–P(1)–
S(1) 86.0(1), C(1)–P(1)–S(1) 124.12(2), S(1)–P(1)–
C(2) 109.8(1), C(1)–P(1)–C(2) 125.6(2).
7
8
3
ꢀ 0.59 (d, JHH ¼ 6:7 Hz, 3H, o-(CH3)(C’H3)CH of Tip), 1.21–1.28 (m,
12H, p-(CH3)2CH of Tip, CH3CH2S, o-(CH3)(C’H3)CH of Tip), 1.30 (d,
3JHH ¼ 6:7 Hz, 3H, o’-(CH3)(C’H3)CH of Tip), 1.39 (d, 3JHH ¼ 6:7 Hz, 3H,
o’-(CH3)(C’H3)CH of Tip), 2.79–2.95 (m, 3H, CH3CH2S, p-
(CH3)(C’H3)CH of Tip), 3.39–3.50 (m, 1H, o-(CH3)(C’H3)CH of Tip),
counter anion, tetrafluoroborate ion.13 There has been no report
on preparation of a fluorophosphorane by such a fluoride ion
abstraction of a phosphonium salt, although the reverse reaction,
that is, the conversion of a fluorophosphorane to a phosphonium
salt by trifluoroborane etherate has already been reported.14;15
The present reaction is formally similar to that of arylium ion in
Schiemann reaction, which affords a fluoroarene from an
aryldiazonium salt with tetrafluoroborate ion.16 Both Lewis
acidity of the phosphonium cation enhanced by strong electron-
withdrawing effect of the Martin ligand and coordination of ether
to trifluoroborane seem to have played an important role in
abstraction of a fluoride ion.
Fluorophosphoranes thus formed are easily defluorinated.
Treatment of 3 or 7b with 1.1 equiv of trimethylsilyl triflate
instead of trifluoroborane etherate in ether at room temperature
quantitatively gave the corresponding phosphonium triflate,
respectively (Scheme 3). Irreversibility of this reaction causes
the formation of fluorotrimethylsilane whose Si–F bond is very
strong and hard to dissociate.
3
4.91 (sept, JHH ¼ 6:7 Hz, 1H, o’-(CH3)(C’H3)CH of Tip), 6.93 (d,
4
4JPH ¼ 7:5 Hz, 1H, m-H of Tip), 7.11 (d, JPH ¼ 5:3 Hz, 1H, m’-H of
3
3
Tip), 7.65–7.76 (m, 3H), 8.31 (dd, JPH ¼ 11:5 Hz, JHH ¼ 7:8 Hz, 1H);
13C{1Hg NMR (126 MHz, CDCl3) ꢀ 15.6 (d, 3JPC ¼ 9 Hz), 23.6 (s), 23.7 (s),
2
3
23.8 (s), 24.5 (s), 25.7 (s), 27.6 (dd, JPC ¼ 18 Hz, JFC ¼ 6 Hz), 30.2 (d,
3JPC ¼ 5 Hz), 31.2 (dd, JPC ¼ 5 Hz, JFC ¼ 8 Hz), 33.9 (s), 82.4 (sept,
2JFC ¼ 31 Hz), 122.1 (q, 1JFC ¼ 289 Hz), 122.3 (d, 3JPC ¼ 17 Hz), 122.4 (q,
1JFC ¼ 288 Hz), 123.7 (d, 3JPC ¼ 17 Hz), 125.2 (d, 3JPC ¼ 16 Hz), 131.4 (d,
3
4
3JPC ¼ 15 Hz), 132.7 (dd, 1JPC ¼ 181 Hz, 2JFC ¼ 28 Hz), 133.0 (d, 4JPC
¼
2
3
2
3 Hz), 133.7 (dd, JPC ¼ 8 Hz, JFC ¼ 12 Hz), 135.5 (dd, JPC ¼ 21 Hz,
1
2
2
3JFC ¼ 4 Hz), 136.4 (dd, JPC ¼ 157 Hz, JFC ¼ 30 Hz), 148.8 (d, JPC
¼
16 Hz), 150.0 (d, 4JPC ¼ 4 Hz), 151.6 (dd, 2JPC ¼ 15 Hz, 3JFC ¼ 7 Hz); 19
F
1
NMR (254 MHz, CDCl3) ꢀ ꢁ25:4 (d, JPF ¼ 801:0 Hz, 1F), ꢁ74:8 (q,
4JFF ¼ 9:1 Hz, 3F), ꢁ75:4 (q, 4JFF ¼ 9:1 Hz, 3F); 31P{1Hg NMR (109 MHz,
1
CDCl3) ꢀ ꢁ20:9 (d, JPF ¼ 801:0 Hz). Anal. Calcd for C26H32F7OPS: C,
56.11; H, 5.86%. Found: C, 56.25; H, 5.60%.
Crystallographic data for 3: C26H32F7OPS, FW ¼ 556:56, T ¼ 173 K,
9
ꢀ
monoclinic, P21/n, a ¼ 8:640ð4Þ, b ¼ 18:800ð1Þ, c ¼ 16:724ð7Þ A, ꢂ ¼
90:730ð3Þ , V ¼ 2713:1ð2Þ A , Z ¼ 4, Dcalc ¼ 1:362 g cmꢁ3. The final
cycle of full-matrix least squares refinement was based on 4069 observed
reflections (I > 3:00ꢃðIÞ) and 325 variable parameters and converged at
RðRwÞ ¼ 0:054 (0.058). Crystallographic data reported in this paper have
been deposited with Cambridge Crystallographic Data Centre as supple-
mentary publication no. CCDC-176386. Copies of the data can be obtained
free of charge on application to CCDC, 12 Union Road, Cambridge, CB2
1EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
ꢂ
ꢀ 3
10 R. R. Holmes and J. A. Deiters, J. Am. Chem. Soc., 99, 3318 (1977).
11 a) Y. Yamamoto, K. Nakao, and K.-y. Akiba, the 23rd Symposium on
Heteroatom Chemistry, Okayama, Dec., 1996, Abstr., No. 28. b) M. Well,
A. Fischer, P. G. Jones, and R. Schmutzler, Phosphorus, Sulfur Silicon
Relat. Elem., 69, 231 (1992).
12 a) R. R. Holmes, K. C. K. Swamy, J. M. Holmes, and R. O. Day, Inorg.
Chem., 30, 1052 (1991). b) V. A. Pinchuk, I. Neda, C. Muller, A. Fisher,
Scheme 3.
¨
P. G. Jones, Y. G. Shermolovich, and R. Schmutzler, Chem. Ber., 127, 1395
(1994).
13 Decomposition of [Ph3Bi(Ph3AsO)2(BF4)2] into Ph3BiF2 and Ph3AsOBF3
was reported, see: R. E. Beaumont, R. G. Gouel, and H. S. Prasad, Inorg.
Chem. 12, 944 (1973).
14 Ligand exchanges of ꢁantimony(V) and phosphorus(V) porphyrins by a
fluoride ion of the PF6 counteranion were reported, see: a) K. M. Kadish,
M. Autret, Z. Ou, K.-y. Akiba, S. Matsumoto, R. Wada, and Y. Yamamoto,
Inorg. Chem., 35, 5564 (1996). b) K.-y. Akiba, R. Nadano, W. Satoh, Y.
Yamamoto, S. Nagase, Z. Ou, X. Tan, and K. M. Kadish, Inorg. Chem., 40,
5553 (2001).
In summary, we developed the novel synthetic method of
fluorophosphoranes. The key in this method seems to be the
cooperative action of high Lewis acidity of the phosphorus atom
with coordination of ether to trifluoroborane. And we demon-
strated that the phosphonium triflates are readily obtained from
the fluorophosphoranes.
This work was partially supported by Grant-in-Aid for
Scientific Research from the Ministry of Education, Culture,
Sports, Science, Technology of Japan. We are grateful to Central
Glass and Tosoh Finechem Corporation for the gifts of
organofluorine compounds and alkyllithiums, respectively.
15 For conversion of
trifluoroborane etherate, see: a) U. von Allworden and G.-V. Roschenthaler,
a fluorophosphorane to a phosphonium salt by
¨
¨
Chem.-Ztg., 109, 352 (1985). b) E. Fluck, P. Kuhm, and H. Riffel, Z. Anorg.
Allg. Chem., 567, 39 (1988).
16 C. M. Sharts, J. Chem. Edu., 45, 185 (1968).