Penicillin and Streptomycin solution (DB Difco) in a humidified
incubator (Sanyo IncuSafe) at 37 ◦C and 5% CO2. Once the
monolayer reached 80–90% confluence (every 3–4 d), the cells were
resuspended as follows. The old growth medium was discarded
and the dishes were washed 3 times with PBS (PAA) to remove
from the cell monolayer all of the trypsin inhibitors contained
in the growth medium. After that, the dishes were incubated at
Images were acquired using the Biorad exploitation system and
displayed using ImageJ.30
Acknowledgements
This work was supported by funding by re´gion Rhoˆne-Alpes
through the CPER “Nouvelles approches physiques des sciences
du vivant”, from “Cluster de recherche Chimie de la re´gion Rhoˆne-
Alpes” for a PhD grant (R.C.), and from the RTRA “Fondation
nanosciences: aux limites de la nanoe´lectronique”.
◦
37 C for 3–5 min with a solution of trypsin/EDTA (Invitrogen
Gibco), which detaches the cells from the surface via proteolysis.
The resulting suspension was gently agitated with a pipette and
10% of it was transferred into duplicate wells of fresh, warmed
media.
Notes and references
1 R. Cossart, D. Aronov and R. Yuste, Nature, 2003, 423, 283–288.
2 (a) J. H. Goldberg, R. Yuste and G. Tamas, J. Physiol., 2003, 551,
67–78; (b) S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux and K.
Delaney, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 1230–1234.
3 (a) A. S. Waggoner, Annu. Rev. Biophys. Bioeng., 1979, 8, 47–68;
(b) L. M. Loew, Pure Appl. Chem., 1996, 68, 1405–1409; (c) M.
Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, Y.-W. Lam,
S. Antic and D. Zecevic, Biol. Bull., 2000, 198, 1–21; (d) A. L. Obaid,
L. M. Loew, J. P. Wuskell and B. M. Salzberg, J. Neurosci. Methods,
2004, 134, 179–190.
4 Y. Tsau, P. Wenner, M. J. O’Donovan, L. B. Cohen, L. M. Loew and
J. P. Wuskell, J. Neurosci. Methods, 1996, 70, 121–129.
5 (a) P. Yan, A. Xie, M. Wei and L. M. Loew, J. Org. Chem., 2008,
73, 6587–6594; (b) J. P. Wuskell, D. Boudreau, M.-d. Wei, L. Jin, E.
Reimund, R. Chebolu, A. Bullen, K. D. Hoffacker, J. Kerimo, L. B.
Cohen, M. R. Zochowski and L. M. Loew, J. Neurosci. Methods, 2006,
151, 200–215.
Combined SHG-TPEF microscopy
Biphotonic laser scanning microscopy was performed with a
confocal set-up consisting of a Biorad MRC 1024 scanhead and
an Olympus BX50WI microscope. The fluorescence signal was
directly epicollected, as shown in Fig. 6, whereas collection of
SHG was performed on the other side of the sample because
the SHG signal is directional and more efficient in transmission.
An excitation beam at 810 nm (Tsunami femtosecond Ti:Sa laser
pumped by a 5 W Spectra-Physics Millenia V) was focused on the
sample using a 60¥ water immersion objective with a 0.9 numerical
aperture (LumPlanFl/IR Olympus). The back aperture of the
objective was slightly underfilled (~70%), giving rise to a voxel
size of 0.5 mm ¥ 0.5 mm in the horizontal plane and 3 mm in
the vertical dimension. The pulse length at the entrance of the
microscope is 100 fs but the light is dispersed, mainly by the
lenses of the objective. Therefore, we estimate a 500 fs length
at the focal plane. The beam was scanned in the x–y plane to
acquire 512 ¥ 512 pixels images in 0.9 s. To vary the observation
depth, z-scan was performed by vertical motion of a motorized
objective. The incident laser intensity was adjusted by a half-
wave plate and a polarizer placed before the microscope so that
the total average power delivered at the surface ranged from 1–
100 mW. Two channels could be simultaneously recorded using
two added external photomultiplier tubes and appropriate filters.
6 L. M. Loew, G. W. Bonneville and J. Surow, Biochemistry, 1978, 17,
4065–4071.
7 J. Y. Huang, A. Lewis and L. M. Loew, Biophys. J., 1988, 53, 665–670.
8 (a) V. E. Centonze and J. G White, Biophys. J., 1998, 75, 2015–2024;
(b) P. T. C. So, C. Y. Dong, B. R. Masters and K. M. Berland, Annu. Rev.
Biomed. Eng., 2000, 2, 399–429; (c) A. Hopt and E. Neher, Biophys. J.,
2001, 80, 2029–2036; (d) L. Sacconi, D. A. Dombeck and W. W. Webb,
Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 3124–3129; (e) G. McConnell,
J. Biomed. Opt., 2006, 11, 054020.
9 P. J. Campagnola, M. Wei, A. Lewis and L. M. Loew, Biophys. J., 1999,
77, 3341–3349.
10 L. Moreaux, O. Sandre and J. Mertz, J. Opt. Soc. Am. B, 2000, 17,
1685–1694.
11 L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce and J. Mertz,
Biophys. J., 2001, 80, 1568–1574.
12 O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell and L. M. Loew,
Biophys. J., 1993, 65, 672–679.
13 A. C. Millard, L. Jin, M.-d. Wei, J. P. Wuskell, A. Lewis and L. M.
Loew, Biophys. J., 2004, 86, 1169–1176.
14 L. Sacconi, J. Mapelli, D. Gandolfi, J. Lotti, R. P. O’Connor, E.
D’Angelo and F. S. Pavone, Opt. Express, 2008, 16, 14910–14921.
15 (a) D. A. Dombeck, L. Sacconi, M. Blanchard-Desce and W. W. Webb,
J. Neurophysiol., 2005, 94, 3628–3636; (b) T. Z. Teisseyre, A. C. Millard,
P. Yan, J. P. Wuskell and M.-d. Wei, J. Biomed. Opt., 2007, 12, 044001.
16 J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O.
Paulsen, K. Clays and H. L. Anderson, J. Am. Chem. Soc., 2009, 131,
2758–2759.
17 C. Barsu, R. Fortrie, K. Nowika, P. L. Baldeck, J.-C. Vial, A. Barsella,
A. Fort, M. Hissler, Y. Bretonnie`re, O. Maury and C. Andraud, Chem.
Commun., 2006, 4744–4746.
18 K. Kachel, E. Asuncion-Punzalan and E. London, Biochim. Biophys.
Acta, Biomembr., 1998, 1374, 63–76.
19 For reviews concerning the function and biological role of cell surface
sugars see: (a) A. Varki, Glycobiology, 1993, 3, 97–130; (b) R. A. Dwek,
Chem. Rev., 1996, 96, 683–720. For reviews dealing with cell surface
oligosaccharides and their implication in cell–cell interactions, and cell
adhesion in cancer metastasis and angiogenesis see: (c) K. J. Yarema
and C. R. Bertozzi, Curr. Opin. Chem. Biol., 1998, 2, 49–61; (d) E.
Gorelik, U. Galili and A. Raz, Cancer Metastasis Rev., 2001, 20, 245–
277; (e) N. Sharon and H. Lis, Glycobiology, 2004, 14, 53R–62R; (f) R.
Kannagi, M. Izawa, T. Koike, K. Miyazaki and N. Kimura, Cancer
Sci., 2004, 95, 377–384.
Fig. 6 Schematic representation of the microscopy set-up.
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 142–150 | 149
©