1962 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 5
Breuning et al.
DIBAL-H (1.0 M in hexane) for 7 h. The crude aldehyde was
subjected to olefination. An amount of 41.0 mg (944 μmol) of
anhydrous LiCl was suspended in 15 mL of CH3CNabs at rt.
Successively 187 μL (212 mg, 944 μmol) of triethylphosphonoace-
tate, 118 μL (120 mg, 787 μmol) of DBU, and a solution of 497 mg
(787 μmol) of Boc-Phg-Gln(Trt)-H in 20 mL of CH3CNabs were
added. The reaction mixture was worked up as described for 15.
Purification was done by cc (silica gel 60, gradient n-hexane/EtOAc
= 2:1 f 1.5:1). Yield: 16a, 57 mg (84.3 μmol, 11%); 16a þ 16b,
122 mg (181 μmol, 23%); 16b, 20 mg (29.6 μmol, 4%). The
Horner-Wadsworth-Emmons olefination also yielded the dia-
stereomeric mixture (16b/16a = 20/80). Compound 16b was
resynthesized using Boc-Phg-(R)-Gln(Trt)-OMe. The purification
was performed by preparative HPLC. Yield: 110 mg, 10%. Mp:
(16a þ 16b) 159-162 ꢀC. [R]D21 þ6.65 (16a, c 0.29, MeOH). ESI-
MS (16a) (m/z): calcd for C41H45N3O6, 675.33 [M]; found,
Schad and Cornelia Heindl for their support in syntheses and
enzyme testings.
Supporting Information Available: Synthetic methods and
analytical data (NMR, IR, MS, purity, optical rotation, melting
points) for the synthesized compounds and 13C NMR data for
compounds 11, 14, 16a, 16b, 42, 43. This material is available
References
(1) The World Health Report 2000; World Health Organization: Geneva,
2000.
(2) Sternberg, J. M. Human African trypanosomiasis: clinical presen-
tation and immune response. Parasite Immunol. 2004, 26, 469–476.
(3) Caffrey, C. R.; Scory, S.; Steverding, D. Cysteine proteinases of
trypanosome parasites: novel targets for chemotherapy. Curr.
Drug Targets 2000, 1, 155–162 and references cited therein .
(4) Snow, R. N.; Craig, M.; Deichmann, U; Marsh, K. Estimating
mortality, morbidity and disability due to malaria among Africa’s
non-pregnant population. Bull. W. H. O. 1999, 77, 624–640.
(5) Dominguez, J. N. Chemotherapeutic agents against malaria: what
next after chloroquine? Curr. Top. Med. Chem. 2002, 2, 1173–1185.
(6) White, N. J. Drug resistance in malaria. Br. Med. Bull. 1998, 54,
703–715.
1
676.4 [M þ 1], 698.3 [M þ Naþ]. H NMR (CDCl3/D2O, 16a):
δ (ppm) = 7.15-7.31 (m, 20 H), 6.64 (dd, 1 H, J = 4.6 Hz, J =
15.7 Hz), 5.28-5.35 (m, 1 H), 4.97 (br s, 1 H), 4.49-4.52 (m, 1 H),
4.09 (q, 2 H, J = 7.1 Hz), 2.32-2.39 (m, 2 H), 1.58-1.95 (m, 2 H),
1.38 (br s, 9 H), 1.22 (t, 3 H, J = 7.1 Hz). 1H NMR (CDCl3/D2O,
16b): δ (ppm) = 7.15-7.31 (m, 20 H, J = Hz), 6.75 (dd, 1 H, J =
4.9 Hz, J = 12.5 Hz), 5.73 (dd, 1 H, J = 12.5 Hz, J = 10.0 Hz),
4.93 (m, 1 H), 4.49-4.51 (m, 1 H), 4.11 (q, 2 H, J = 7.0 Hz),
2.56-2.65 (m, 1 H), 2.38-2.56 (m, 2 H), 2.29-2.18 (m, 1 H), 1.39
(br s, 9 H), 1.21 (t, 3 H, J = 7.0 Hz). [R]2D0 þ2.20 (16b, c 0.99,
MeOH). ESI-MS (16b) (m/z): calcd for C41H45N3O6, 675.33 [M];
found, 676.5 [M þ 1], 698.5 [M þ Naþ]. IR (neat, 16a þ 16b): ν~ =
3279, 2917, 2850, 1716, 1644, 1519, 1492, 1410, 1366, 1272, 1165,
(7) Breman, J. G. The ears of the hippopotamus: manifestations,
determinants, and estimates of the malaria burden. Am. J. Trop.
Med. Hyg. 2001, 64, 1–11.
(8) Rosenthal, P. J. Cysteine proteases of malaria parasites. Int.
J. Parasitol. 2004, 34, 1489–1499.
(9) Caffrey, C. R.; Hansell, E.; Lucas, K. D.; Brinen, L. S.; Hernandez,
A. A.; Cheng, J.; Gwaltney, S. L., 2nd; Roush, W. R.; Stierhof,
Y. D.; Bogyo, M.; Steverding, D.; McKerrow, J. H. Active site
mapping, biochemical properties and subcellular localization of
rhodesain, the major cysteine protease of Trypanosoma brucei
rhodesiense. Mol. Biochem. Parasitol. 2001, 118, 61–73.
(10) Shenai, B. R.; Sijwali, P. S.; Singh, A.; Rosenthal, P. J. Characteri-
zation of native and recombinant falcipain-2, a principal tropho-
zoite cysteine protease and essential hemoglobinase of Plasmodium
falciparum. J. Biol. Chem. 2000, 275, 29000–29010.
(11) Rosenthal, P. J.; Sijwali, P. S.; Singh, A.; Shenai, B. R. Cysteine
proteases of malaria parasites: targets for chemotherapy. Curr.
Pharm. Des. 2002, 8, 1659–1672.
(12) Sijwali, P. S.; Rosenthal, P. J. Gene disruption confirms a critical
role for the cysteine protease falcipain-2 in hemoglobin hydrolysis
by Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
4384–4389.
(13) Sabnis, Y. A.; Desai, P. V.; Rosenthal, P. J.; Avery, M. A. Probing
the structure of falcipain-3, a cysteine protease from Plasmodium
falciparum: comparative protein modeling and docking studies.
Protein Sci. 2003, 12, 501–509.
(14) Barrett, A. J. Bioinformatics of proteases in the MEROPS data-
base. Curr. Opin. Drug. Discovery Dev. 2004, 7, 334–341; http://
merops.sanger.ac.uk/index.htm .
(15) O’Brien, T. C.; Mackey, Z. B.; Fetter, R. D.; Choe, Y.;O’Donoghue,
A. J.; Zhou, M.; Craik, C. S.; Caffrey, C. R.; McKerrow, J. H. A
parasite cysteine protease is key to host protein degradation and iron
acquisition. J. Biol. Chem. 2008, 283, 28934–28943.
(16) Gelhaus, C.; Vicik, R.; Schirmeister, T.; Leippe, M. Blocking effect
of a biotinylated protease inhibitor on the egress of Plasmodium
falciparum merozoites from infected red blood cells. Biol. Chem.
2005, 386, 499–502.
1035 cm-1
.
(S )-Benzyl-2-[(Z)-3-((S)-1-benzyloxycarbonyl-2-phenylethyl-
carbamoyl)acryloylamino]-3-phenylpropionate (42). Method E
with 354 mg (1.00 mmol) of 37, 292 mg (1.00 mmol) of Phe-
OBn HCl, 521 mg (1.00 mmol) of PyBOP in 10 mL of dichlor-
3
methane/DMF (1/1), and 0.52 mL (3.00 mmol) of DIPEA was
used. Reaction time: 3 h, 0 ꢀC, 5 days, rt. Purification was done
by cc (silica gel 60, cyclohexane/EtOAc 2/1). Yield: 175 mg (0.30
mmol, 30%) yellowish resinous solid. [R]2D2 þ57.53ꢀ (c 0.73,
CHCl3). LOOP-ESI-MS: calcd for C36H34N2O6, 590.68; found,
[M þ Na]þ 613.7. 1H NMR (CDCl3): δ = 3.10-3.21 (m, 4 H, J
= 6.3 Hz), 4.88-4.93 (dt, 2 H, J = 6.3, 7.0 Hz), 5.15, 5.16 (2d, 4
H, J = 12.1 Hz), 6.06 (s, 2 H), 7.08-7.34 (m, 20 H), 8.51 (d, 2 H,
J = 7.0 Hz) ppm. IR (neat): ν~ = 3250, 3031, 2955, 1740, 1671,
1616, 1537, 1454, 1347, 1260 cm-1
.
(S )-Benzyl-2-{(Z)-3-[(S)-1-((S)-1-benzyloxycarbonylethyl-
carbamoyl)-2-phenylethylcarbamoyl]acryloylamino}-3-phenylpro-
pionate (43). Method E with 211 mg (0.55 mmol) of 37, 242 mg
(0.55 mmol) of Phe-Ala-OBn TFA and 286 mg (0.55 mmol) of
3
PyBOP in 20 mL of dichlormethane/DMF (1/1), and 0.28 mL
(1.65 mmol) of DIPEA was used. Reaction time: 5 h, 0 ꢀC, 5 days,
rt. Purification was done by cc (silica gel 60, cyclohexane/ethyl
acetate 1/1). Yield: 147 mg (0.22 mmol, 40%) yellowish resinous
solid. [R]2D2 þ1.28ꢀ (c 0.47, CHCl3). LOOP-ESI-MS: calcd for
C39H39N3O7, 661.76; found, [M þ Na]þ 684.7. 1H NMR
(CDCl3): δ = 1.35 (d, 3 H, J = 7.3 Hz), 3.08-3.18 (m, 4 H,
J = 6.0, 6.8 Hz), 4.51-4.58 (dt, 1 H, J = 7.1, 7.3 Hz), 4.67-4.74
(dt, 1 H, J = 6.8, 7.8 Hz), 4.84-4.91 (dt, 1 H, J = 6.0, 7.3 Hz),
5.13, 5.15 (2d, 4 H, J = 12.1 Hz), 6.03 (d, 1 H, J = 13.2 Hz), 6.08
(d, 1 H, J = 13.2 Hz), 6.81 (d, 1 H, J = 7.3 Hz), 7.16-7.40 (m, 20
H), 7.94 (d, 1 H, J = 7.3 Hz), 8.41 (d, 1 H, J = 7.8 Hz) ppm. IR
(neat): ν~ = 3273, 3063, 3032, 2929, 1741, 1658, 1621, 1536, 1497,
(17) Francis, S. E.; Sullivan, D. J., Jr.; Goldberg, D. E. Hemoglobin
metabolism in the malaria parasite Plasmodium falciparum. Annu.
Rev. Microbiol. 1997, 51, 97–123.
(18) McKerrow, J. H.; Sun, E.; Rosenthal, P. J.; Bouvier, J. The
proteases and pathogenicity of parasitic protozoa. Annu. Rev.
Microbiol. 1993, 47, 821–853.
(19) Ettari, R.; Micale, N.; Schirmeister, T.; Gelhaus, C.; Leippe, M.;
Nizi, E.; DiFrancesco, M. E.; Grasso, S.; Zappala, M. Novel
peptidomimetic cysteine protease inhibitors as potential antima-
larial agents. J. Med. Chem. 2009, 52, 2157–2160.
1452, 1385, 1260 cm-1
.
(20) Sijwali, P. S.; Koo, J.; Singh, N.; Rosenthal, P. Gene disruptions
demonstrate independent roles for the four falcipain cysteine
proteases of Plasmodium falciparum. J. Mol. Biochem. Parasitol.
2006, 150, 96–106.
Acknowledgment. We thank the DFG (Deutsche For-
schungsgemeinschaft) for ongoing financial support of our
work (Grants SFB 630, TP A3, and TP A4). We also thank
Prof. Dr. Heidrun Moll, Molecular Infection Biology, Uni-
€
versity of Wurzburg, for financial support of the trypanosome
and macrophage testings. We give many thanks to Caroline
€
(21) Machon, U.; Buchold, C.; Stempka, M.; Schirmeister, T.; Gelhaus,
C.; Leippe, M.; Gut, J.; Rosenthal, P. J.; Kisker, C.; Leyh, M.;
Schmuck, C. On-bead screening of a combinatorial fumaric acid
derived peptide library yields antiplasmodial cysteine protease