558
R. S. Holdroyd et al. / Tetrahedron Letters 51 (2010) 557–559
Nolan, S. P., Ed.; Wiley-VCH: Weinheim, 2006; (d) Glorius, F. Top. Organomet.
Chem. 2007, 21; (e) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107,
5606; (f) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2008, 47, 3122;.
2. (a) Mayr, M.; Wurst, K.; Ongania, K.-H.; Buchmeiser, M. R. Chem. Eur. J. 2004, 10,
1256; (b) Yang, L. R.; Mayr, M.; Wurst, K.; Buchmeiser, M. R. Chem. Eur. J. 2004,
10, 5761; (c) Scarborough, C. C.; Grady, M. J. W.; Guzei, I. A.; Gandhi, B. A.;
Bunel, E. E.; Stahl, S. S. Angew. Chem., Int. Ed. 2005, 44, 5269; (d) Bantu, B.;
Wang, D. R.; Wurst, K.; Buchmeiser, M. R. Tetrahedron 2005, 61, 12145; (e)
Rogers, M. M.; Wendlandt, J. E.; Guzei, I. A.; Stahl, S. S. Org. Lett. 2006, 8, 2257;
(f) Iglesias, M.; Beetstra, D. J.; Stasch, A.; Horton, P. N.; Hursthouse, M. B.; Coles,
S. J.; Cavell, K. J.; Dervisi, A.; Fallis, I. A. Organometallics 2007, 26, 4800; (g)
Scarborough, C. C.; Bergant, A.; Sazama, G. T.; Guzei, I. A.; Spencer, L. C.; Stahl, S.
S. Tetrahedron 2009, 65, 5084; (h) Binobaid, A.; Iglesias, M.; Beetstra, D. J.;
Kariuki, B.; Dervisi, A.; Fallis, I. A.; Cavell, K. J. Dalton Trans. 2009, 7099.
3. Iglesias, M.; Beetstra, D. J.; Knight, J. C.; Ooi, L. L.; Stasch, A.; Coles, S. J.; Male, L.;
Hursthouse, M. B.; Cavell, K. J.; Dervisi, A.; Fallis, I. A. Organometallics 2008, 27,
3279.
Figure 1. ORTEP diagram of 6. Ellipsoids are shown at 50% probability while all
hydrogen atoms have been removed for clarity.
4. (a) Goumri, S.; Leriche, Y.; Gornitzka, H.; Baceiredo, A.; Bertrand, G. Eur. J. Inorg.
Chem. 1998, 1539; (b) Solé, S.; Gornitzka, H.; Schoeller, W. W.; Bourissou, D.;
Bertrand, G. Science 2001, 292, 1901; (c) Canac, Y.; Conejero, S.; Soleilhavoup,
M.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2006, 128, 459; (d) Vignolle, J.;
Asay, M.; Miqueu, K.; Bourissou, D.; Bertrand, G. Org. Lett. 2008, 10, 4299; (e)
Vignolle, J.; Cattoën, X.; Bourissou, D. Chem. Rev. 2009, 109, 3333. While this
manuscript was being refereed, there have been reports of intramolecular C-H
insertion in a free diamidocarbene (Hudnall, T. W.; Bielawski, C. W. J. Am. Chem.
Soc. 2009, 131, 16039) and a free abnormal N-heterocyclic carbene (Aldeco-
Perez, E.; Rosenthal, A. J.; Donnadieu, B.; Parameswaran, P.; Frenking, G.;
Bertrand, G. Science 2009, 326, 556).
5. For examples of NHC insertion into acidic (pKa ꢁ 25) C–H bonds see: (a)
Arduengo, A. J., III; Calabrese, J. C.; Davidson, F.; Dias, H. V. R.; Goerlich, J. R.;
Krafczyk, R.; Marshall, W. J.; Tamm, M.; Schmutzler, R. Helv. Chim. Acta 1999,
82, 2348; (b) Korotkikh, N. I.; Ytayenko, G. F.; Shvaika, O. P.; Pekhtereva, T. M.;
Cowley, A. H.; Jones, J. N.; Macdonald, C. L. B. J. Org. Chem. 2003, 68, 5762; (c)
Nyce, G. W.; Csihony, S.; Waymouth, R. M.; Hedrick, J. L. Chem. Eur. J. 2004, 10,
4073.
spectra were replaced by signals at d 82.6 (3) and d 81.8 (4) for the
newly formed methine C2 carbon centres.11 Despite a number of
attempts, 3 and 4 could only be isolated as viscous oils, excluding
any possibility of crystallographic characterisation.
Dissolution of either 3 or 4 in CDCl3 resulted in opening of the
saturated seven- and six-membered rings to afford the N-alkyl in-
dole products 5 and 6.12 Proton NMR spectra revealed the presence
of two new high frequency doublets for both 5 (d 6.86, 6.26) and 6
(d 6.70, 6.51), characteristic of the indolyl protons. The structure of
6 was confirmed unequivocally by X-ray crystallography (Fig. 1)
following the successful crystallisation of the compound from a
concentrated MeOH solution at ꢀ78 °C.13 Exposure of 3 and 4 to
a silica gel column led to their conversion into 5 and 6, which along
with the chloroform result, suggests that traces of acid are likely to
be responsible for the ring-opening reaction.14
Further work is necessary to elucidate fully the factors that gov-
ern the insertion chemistry seen for 1 and 2. The order of basicity
(7-NHC > 6-NHC > 5-NHC)15 makes it very likely that this is an
important contributor. In line with this, thermolysis of SIMes
(Scheme 1: B, R = mesityl) at 70 °C for 72 h resulted in no insertion
chemistry. The proximity of the carbene lone pair of electrons to a
C–H bond does not appear to be paramount given that the distance
from the carbenic carbon to the nearest methyl substituent is in
fact longer in the more reactive species 1 (3.348 Å) than it is in 2
(3.281 Å).3 The same two structures show quite different CMes–
N–N–CMes torsion angles, and it may be that these are altered
upon generating the bicyclic ring systems present in 3 and 4. It is
also worth noting that upon changing the N-substituent on the se-
ven-membered carbene from mesityl to 2,6-diisopropylphenyl, no
activation of an isopropyl methyl C–H bond was observed even
after heating at 70 °C for 48 h, implying that it is unfavourable to
form a second six- rather than five-membered ring.
6. Lloyd-Jones, G. C.; Alder, R. W.; Owen-Smith, G. J. J. Chem. Eur. J. 2006, 12, 5361.
7. (a) Jazzar, R. F. R.; Macgregor, S. A.; Mahon, M. F.; Richards, S. P.; Whittlesey, M.
K. J. Am. Chem. Soc. 2002, 124, 4944; (b) Abdur-Rashid, K.; Fedorkiw, T.; Lough,
A. J.; Morris, R. H. Organometallics 2004, 23, 86; (c) Dharmasena, U. L.; Foucault,
H. M.; dos Santos, E. N.; Fogg, D. E.; Nolan, S. P. Organometallics 2005, 24, 1056;
(d) Reade, S. P.; Mahon, M. F.; Whittlesey, M. K. J. Am. Chem. Soc. 2009, 131,
1847.
8.
A
suspension of 1ꢂHBF4 (528 mg, 1.25 mmol) and KN(SiMe3)2 (250 mg,
1.25 mmol) in benzene (10 mL) was heated at 70 °C for 24 h. The solution
was cooled, filtered to remove KBF4 and the volatiles were removed in vacuo to
yield a pale yellow oil corresponding to 3 (418 mg, 99% yield). 1H NMR (see
Supplementary data for assignments; 500 MHz, C6D6, 298 K): d 6.79 (s, 1H,
CHm), 6.76 (s, 1H, CHm), 6.69 (s, 1H, CH7), 6.59 (s, 1H, CH5), 4.97 (dd, 1H,
0
0
3JHH = 8.2 Hz, JHH = 5.6 Hz, CH2), 3.92 (m, 1H, CH21 ), 3.21 (m, 1H, CH21 ), 3.00
3
0
2
3
(m, 2H, CH24 ), 2.77 (dd, 1H, JHH = 16.2 Hz, JHH = 5.6 Hz, CH23), 2.62 (dd, 1H,
2JHH = 16.2 Hz, 3JHH = 8.2 Hz, CH23), 2.29 (s, 3H, C8CH3), 2.21 (s, 6H, CoCH3), 2.18
0
0
(s, 3H, C6CH3), 2.15 (s, 3H, CpCH3), 1.73 (m, 1H, CH22 ), 1.60 (m, 1H, CH22 ), 1.53
0
0
(m, 1H, CH23 ), 1.46 (m, 1H, CH23 ). 13C{1H}: d 147.7 (s, C9), 145.0 (s, Ci), 138.6 (s,
Co), 137.7 (s, Co), 135.0 (s, Cp), 132.0 (s, C7), 130.6 (s, Cm), 130.3 (s, Cm), 130.0 (s,
0
0
C4), 127.8 (s, C6), 123.4 0(s, C5), 118.7 0(s, C8), 82.6 (s, C2), 53.7 (s, C4 ), 48.8 (s, C1 ),
35.2 (s, C3), 31.4 (s, C3 ), 29.2 (s, C2 ), 21.2 (s, C6CH3), 21.1 (s, CpCH3), 20.5 (s,
CoCH3), 20.4 (s, CoCH3), 20.0 (s, C8CH3). ESI-TOF MS: [M+H]+ m/z = 335.2495
(theoretical 335.2487).
9. The in situ route was adopted simply for convenience, as isolation of 1 and 2
(see Ref. 3 for their reported preparation and isolation) in our hands proved
possible only in low yields. Nevertheless, thermolysis of an isolated
In conclusion, we have demonstrated that increasing the ring
size (5 ? 6 ? 7) in N-heterocyclic carbenes results in the unprece-
dented observation of intramolecular C–H insertion in a diamino-
carbene. We believe that these results have ramifications not
only in organocarbene chemistry, but also in the application of
these ligands in transition metal catalysis.
crystalline sample of
was slower.
1 in benzene generated 3, although the conversion
10.
A
suspension of 2ꢂHBF4 (510 mg, 1.25 mmol) and KN(SiMe3)2 (250 mg,
1.25 mmol) in benzene (10 mL) was heated at 70 °C for 72 h. The solution
was cooled, filtered to remove KBF4 and the volatiles were removed in vacuo to
yield an oil, which was purified by distillation under vacuum (100 °C,
6 ꢃ 10ꢀ2 mmHg) to afford 4 as a pale yellow oil (304 mg, 76% yield). 1H NMR
(see Supplementary data for assignments; 500 MHz, C6D6, 298 K): d 6.78 (s, 1H,
CHm), 6.68 (s, 1H, CHm), 6.64 (s, 1H, CH7), 6.59 (s, 1H, CH5), 4.87 (dd, 1H,
Acknowledgement
0
0
3JHH = 6.1 Hz,0 JHH = 4.5 Hz, CH2), 4.12 (m, 1H, CH212 ), 3.13 (m, 1H, CH24 ), 3.00
3
0
3
(m, 1H, CH21 ), 2.79 (m, 1H, CH24 ), 2.55 (dd, 1H, JHH = 15.0 Hz, JHH = 6.1 Hz,
CH23), 2.46 (dd, 1H, 2JHH = 15.0 Hz, 3JHH = 4.5 Hz, CH23), 2.26 (s, 3H, C8CH3), 2.18
(s, 3H, C6CH3), 2.15 (s, 3H, CoCH3), 2.13 (s, 3H, CpCH3), 2.10 (s, 3H, CoCH3), 1.92
The EPSRC is acknowledged for funding (M.J.P.).
0
0
(m, 1H, CH22 ), 1.12 (m, 1H, CH22 ). 13C{1H}: d 146.5 (s, C9), 144.2 (s, Ci), 140.3 (s,
Supplementary data
Co), 137.1 (s, Co), 135.5 (s, Cp), 132.1 (s, C7), 130.9 (s, C4), 130.6 (s, Cm), 130.0 (s,
0
0
C
m), 127.6 (s, C6), 124.3 (s, C5), 117.9 (s, C8), 81.8 (s, C2), 50.6 (s, C3 ), 47.4 (s, C1 ),
0
34.3 (s, C3), 26.3 (s, C2 ), 21.2 (s, CpCH3), 21.1 (s, C6CH3), 20.4 (s, CoCH3), 20.3 (s,
C8CH3), 19.6 (s, CoCH3). ESI-TOF MS: [M+H]+ m/z = 321.2325 (theoretical
321.2331). Analysis found: C, 81.01; H, 8.63; N, 8.63. C22H28N2ꢂ0.33 MeOH
requires: C, 81.02; H, 8.93; N, 8.46.
Supplementary data (NMR numbering schemes for compounds
3–6) associated with this article can be found, in the online version,
11. (a) Chen, Y.-T.; Jordan, F. J. Org. Chem. 1991, 56, 5029; (b) Alder, R. W.; Blake, M.
E.; Chaker, L.; Harvey, J. N.; Paolini, F.; Schutz, J. Angew. Chem., Int. Ed. 2004, 43,
5896.
References and notes
12. Solutions of 3 or 4 (1.10 mmol) were stirred in CHCl3 (10 mL) for 24 h. These
solutions were reduced to dryness, redissolved in MeOH (2 mL) and cooled at
1. (a) Bourissou, D.; Guerret, O.; Gabba, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39;
(b) Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534; (c) N-Heterocyclic