Shen et al.
JOCArticle
have been well-established to efficiently promote the
Biginelli reaction.5
SCHEME 1. Brønsted Base-Mediated Biginelli-Type Reaction
Recently, the use of other active methylene compounds in
addition to β-ketoester in classic Biginelli reaction has
emerged as one of the hot research areas in terms of the
preparation of various novel dihydropyrimidinones. Just as
the Biginelli reaction operates in the presence of Lewis acid
or protic acid,2,3,5 these MCC reactions for the preparation
of novel dihydropyrimidinones using various active methyl-
ene compounds, such as 5,5-dimethyl-1,3-cyclohexanedione,4b
1,3-cyclohexanedione,6 1-tetralone,6-8 acetophenone,8 cyclo-
pentanone,9 aliphatic aldehydes,10 and β-oxodithioesters,11
were also developed to be carried out using a Lewis or protic
acid such as HCl, TMSCl/NaI, FeCl3, ZnI2, YbCl3, BF3, and
SnCl2. More recently, a one-pot variant of Biginelli-type
reaction using enaminone12 promoted by TMSCl was also
reported.
However, despite extensive studies on the Biginelli-type
reactions reported in the literature, to the best of our know-
ledge, there is no report focusing on the development of one-
pot Biginelli-type reaction under basic conditions.13 We
envisioned that, if the Biginelli-type reaction can be deve-
loped under basic conditions using Brønsted bases14 rather
than Lewis acids, it will provide an important complement to
classic Biginelli reaction and help deepen our understanding
of Biginelli reaction. In continuation of our endeavors in
developing novel and practical multicomponent reactions to
synthesize useful heterocyclic compounds,14n,15 herein, we
describe a novel Brønsted base-promoted one-pot synthesis
of 4,5,6-triaryl-3,4-dihydropyrimidin-2(1H)-one via a three-
component condensation of aldehyde, 2-phenylacetophe-
none, and urea/thiourea. The reactions proceeded effici-
ently in the presence of a catalytic amount of Brønsted base
(20 mol % of t-BuOK) to afford dihydropyrimidinones in
moderate to good yields (Scheme 1). In addition, through
detailed mechanistic study, enone 5 and bis-urea 8 were
highly suggested as reaction intermediates for reactions
involving thiourea and urea as substrates, respectively.
(5) For selected examples, see: (a) Rodriguez-Dominguez, J. C.; Bernardi,
D.; Kirsch, G. Tetrahedron Lett. 2007, 48, 5777 and references cited therein.
(b) Su, W. K.; Li, J. J.; Zheng, Z. G.; Shen, Y. C. Tetrahedron Lett. 2005, 46, 6037
and references cited therein. (c) Shi, F.; Jia, R. H.; Zhang, X. J.; Tu, S. J.; Yan, S.;
Zhang, Y.; Jiang, B.; Zhang, J. Y.; Yao, C. S. Synthesis 2007, 2782. (d) Tu, S. J.;
Fang, F.; Zhu, S. L.; Li, T. J.; Zhang, X. J.; Zhuang, Q. Y. Synlett 2004, 537.
(e) Yadav, J. S.; Reddy, B. V. S.; Reddy, K. B.; Raj, K. S.; Prasad, A. R. J. Chem.
Soc., Perkin Trans. 1 2001, 1939. (f) Ahmed, N.; van Lier, J. E. Tetrahedron
Lett. 2007, 48, 5407. (g) Ma, Y.; Qian, C.; Wang, L.; Yang, M. J. Org. Chem.
2000, 65, 3864. (h) Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270.
(i) Lu, J.; Bai, Y.; Wang, Z.; Yang, B.; Ma, H. Tetrahedron Lett. 2000, 41, 9075.
(j) Dondoni, A.; Massi, A. Tetrahedron Lett. 2001, 42, 7975. (k) Tu, S. J.; Fang,
F.; Miao, C. B.; Jiang, H.; Feng, Y. J.; Shi, D. Q.; Wang, X. S. Tetrahedron Lett.
2003, 44, 6153. (l) Kappe, C. O.; Kumar, D.; Varma, R. S. Synthesis 1999, 1799.
(m) Hu, E. H.; Sidler, D. R.; Dolling, U. H. J. Org. Chem. 1998, 63, 3454. (n) Xin,
J. G.; Chang, L.; Hou, Z. R.; Shang, D. J.; Liu, X. H.; Feng, X. M. Chem.;Eur. J.
2008, 14, 3177. (o) Chen, X. H.; Xu, X. Y.; Liu, H.; Cun, L. F.; Gong, L. Z. J. Am.
Chem. Soc. 2006, 128, 14802. (p) Ryabukhin, S. V.; Plaskon, A. S.; Ostapchuk,
E. N.; Volochnyuk, D. M.; Shishkin, O. V.; Shivanyuk, A. N.; Tolmachev, A. A.
Org. Lett. 2007, 9, 4215. (q) Kumar, A.; Maurya, R. A. Tetrahedron Lett. 2007,
48, 4569. (r) Yadav, J. S.; Subba Reddy, B. V.; Srinivas, R.; Venugopal, C.;
Ramalingam, T. Synthesis 2001, 1341. (s) Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang,
S. W.; Wang, J. T.; Peppe, C. Tetrahedron 2002, 58, 4801. (t) Cepanec, I.; Litvic,
M.; Filipan-Litvic, M.; Grungold, I. Tetrahedron 2007, 63, 11822. (u) Bussolari,
J. C.; McDonnell, P. A. J. Org. Chem. 2000, 65, 6777. (v) Bigi, F.; Carloni, S.;
Frullanti, B.; Maggi, R.; Sartori, G. Tetrahedron Lett. 1999, 40, 3465. (w) Mitra,
A. K.; Banerjee, K. Synlett 2003, 1509. (x) Lu, J.; Ma, H. R. Synlett 2000, 63.
(y) Li, N.; Chen, X. H.; Song, J.; Luo, S. W.; Fan, W.; Gong, L. Z. J. Am. Chem.
Soc. 2009, 131, 15301.
Results and Discussion
(6) Ghorab, M. M.; Abdel-Gawad, S. M.; El-Gaby, M. S. A. Il Farmaco
Initial studies were focused on the one-pot three-component
condensation of 4-chlorobenzaldehyde, 2-phenylacetophe-
none, and thiourea at 70 °C for 12 h using different Lewis/
protic acids in ethanol. The results are summarized in Table 1.
As shown in Table 1, our attempt to perform the model
reaction using conventional Biginelli reaction conditions
in the presence of Lewis acids such as InCl3, FeCl3, ceric
ammonium nitrate (CAN), and I2 did not succeed; no desi-
red product was obtained after reacting at 70 °C for 12 h
(Table 1, entries 1-4). In comparison, moderate yields of 4a
2000, 55, 249.
(7) Abelman, M. M.; Smith, S. C.; James, D. R. Tetrahedron Lett. 2003,
44, 4559.
(8) (a) Wang, Z. T.; Xu, L. W.; Xia, C. G.; Wang, H. Q. Tetrahedron Lett.
2004, 45, 7951. (b) Sabitha, G.; Reddy, K. B.; Srinivas, R.; Yadav, J. S. Helv.
Chim. Acta 2005, 88, 2996. (c) Liang, B.; Wang, X. T.; Wang, J. X.; Du, Z. Y.
Tetrahedron 2007, 63, 1981.
(9) Zhang, H. H.; Zhou, Z. Q.; Yao, Z. G.; Xu, F.; Shen, Q. Tetrahedron
Lett. 2009, 50, 1622.
(10) Bailey, C. D.; Houlden, C. E.; Bar, G. L. J.; Lloyd-Jones, G. C.;
Booker-Milburn, K. I. Chem. Commun. 2007, 2932.
(11) Singh, O. M.; Devi, N. S. J. Org. Chem. 2009, 74, 3141.
(12) Wan, J. P.; Pan, Y. J. Chem. Commun. 2009, 2768.
(13) For modified multistep synthesis of 3,4-dihydropyrimidin-2(1H)-
ones under basic condition using a protection and deprotection strategy, see:
(a) Atwal, K. S.; Rovnyak, G. C.; O’Reilly, B. C.; Schwartz, J. J. Org. Chem.
1989, 54, 5898. For selected typical examples of modifications of Biginelli
reaction, see: (b) O’Reilly, B. C.; Atwal, K. S. Heterocycles 1987, 26, 1185.
(c) Atwal, K. S.; O’Reilly, B. C.; Gougoutas, J. Z.; Malley, M. F. Hetero-
cycles 1987, 26, 1189. (d) Shutalev, A. D.; Kuksa, V. A. Chem. Heterocycl.
Compd. 1997, 33, 91. (e) Nilsson, B. L.; Overman, L. E. J. Org. Chem. 2006,
71, 7706. (f) Khosropour, A. R.; Khodaei, M. M.; Beygzadeh, M.; Jokar, M.
Heterocycles 2005, 65, 767. (g) Valverde, M. G.; Dallinger, D.; Kappe, C. O.
Synlett 2001, 74. (h) Kappe, C. O. Bioorg. Med. Chem. Lett. 2000, 10, 49.
(i) Abdel-Fattah, A. A. A. Synthesis 2003, 2358. (j) Khodaei, M. M.;
Khosropour, A. R.; Jowkar, M. Synthesis 2005, 1301. (k) Legeay, J. C.;
Vanden Eynde, J. J.; Toupet, L.; Bazureau, J. P. ARKIVOC 2007, iii, 13.
(l) Yadav, L. D. S.; Awasthi, C.; Rai, V. K.; Rai, A. Tetrahedron Lett. 2007,
48, 4899. (m) Wipf, P.; Cunningham, A. Tetrahedron Lett. 1995, 36, 7819.
(n) Lusch, M. J.; Tallarico, J. A. Org. Lett. 2004, 6, 3237. (o) Hulme, R.;
(14) For selected recent examples of base-mediated multicomponent
condensations, see: (a) Ranu, B. C.; Jana, R.; Sowmiah, S. J. Org. Chem.
2007, 72, 3152. (b) Wang, S. H.; Tu, Y. Q.; Chen, P.; Hu, X. D.; Zhang, F. M.;
Wang, A. X. J. Org. Chem. 2006, 71, 4343. (c) Volonterio, A.; Zanda, M.
J. Org. Chem. 2008, 73, 7486. (d) Bora, U.; Saikia, A.; Boruah, R. C. Org.
Lett. 2003, 5, 435. (e) Chebanov, V. A.; Saraev, V. E.; Desenko, S. M.;
Chernenko, V. N.; Shishkina, S. V.; Shishkin, O. V.; Kobzar, K. M.; Kappe,
C. O. Org. Lett. 2007, 9, 1691. (f) Baxendale, I. R.; Buckle, C. D.; Ley, S. V.;
Tamborini, L. Synthesis 2009, 1485. (g) Masquelina, T.; Obrecht, D. Tetra-
hedron 2001, 57, 153. (h) Yavari, I.; Kowsari, E. Synlett 2008, 897.
(i) Goswami, P.; Das, B. Tetrahedron Lett. 2009, 50, 2384. (j) Chetia, A.;
Saikia, C. J.; Lekhok, K. C.; Boruah, R. C. Tetrahedron Lett. 2004, 45, 2649.
(k) Maggi, R.; Ballini, R.; Sartori, G.; Sartorio, R. Tetrahedron Lett. 2004,
45, 2297. (l) Fujisawa, H.; Takahashi, E.; Mukaiyama, T. Chem.;Eur. J.
2006, 12, 5082. (m) Ibrahem, I.; Zou, W. B.; Engqvist, M.; Xu, Y. M.;
Cordova, A. Chem.;Eur. J. 2005, 11, 7024. (n) Shen, Z. L.; Ji, S. J.; Wang,
S. Y.; Zeng, X. F. Tetrahedron 2005, 61, 10552.
ꢀ
Zamora, O. D. P.; Mota, E. J.; Pasten, M. A.; Contreras-Rojas, R.; Miranda,
R.; Valencia-Hernandez, I.; Correa-Basurto, J.; Trujillo-Ferrara, J.; Delgado,
ꢀ
F. Tetrahedron 2008, 64, 3372. (p) Legeay, J. C.; Vanden Eynde, J. J.;
ꢀ
(15) (a) Zhu, S. L.; Ji, S. J.; Su, X. M.; Sun, C.; Liu, Y. Tetrahedron Lett.
2008, 49, 1777. (b) Sun, C.; Ji, S. J.; Liu, Y. Tetrahedron Lett. 2007, 48, 8987.
(c) Zhu, S. L.; Ji, S. J.; Zhao, K.; Liu, Y. Tetrahedron Lett. 2008, 49, 2578.
(d) Zhu, S. L.; Ji, S. J.; Zhang, Y. Tetrahedron 2007, 63, 9365.
Bazureau, J. P. Tetrahedron 2005, 61, 12386. (q) Vanden Eynde, J. J.; Watte,
O. ARKIVOC 2003, iv, 93. (r) Shutalev, A. D.; Kishko, E. A.; Sivova, N. V.;
Kuznetsov, A. Yu. Molecules 1998, 3, 100.
J. Org. Chem. Vol. 75, No. 4, 2010 1163