742
R. Cordonnier et al. / Tetrahedron 66 (2010) 736–742
3. (a) Wenger, W.; Vasella, A. Helv. Chim. Acta 2000, 83, 1542 and references cited
of diastereoisomers 12 (1.58 g, 32%) as an orange syrup: IR (ATR)
2962–2856, 1462, 1360, 1259, 1185, 1118, 1027 cmꢀ1 1H NMR
(CDCl3, 300 MHz) 7.53–7.41 (m, 5H, C6H5), 5.59 (s, 1H, H-5), 5.02
n
´
herein; (b) Czernecki, S.; Valery, J.-M. J. Carbohydr. Chem. 1986, 5, 235.
;
4. (a) Pe´rez.Pe´rez, M. J.; Camarasa, M. J. J. Chem. Soc., Chem. Commun. 1992, 1403;
d
´
´
(b) Perez.Perez, M. J.; Camarasa, M. J. Tetrahedron 1994, 50, 7269.
5. For some useful transformations of alkylidenecarbenes in sugar templates, see:
(a) Tronchet, J. M. J.; Gonza´lez, A.; Zumwald, J.-B.; Perret, F. Helv. Chim. Acta
1974, 57, 1505; (b) Hauske, J. R.; Guadliana, M.; Desai, K. J. Org. Chem. 1982, 47,
5019; (c) Ohira, S.; Sawamoto, T.; Yamato, M. Tetrahedron Lett. 1995, 36, 1537;
(d) Niizuma, S.; Shuto, S.; Matsuda, A. Tetrahedron 1997, 53, 13621; (e) Wardrop,
D. J.; Zhang, W.; Frtz, J. Org. Lett. 2002, 4, 489.
(d, J4A,4B¼11.1 Hz, 1H, H-4A), 4.15–4.04 (m, 4H, H-2, 2ꢂH-1, H-4B),
3.19 (s, 3H, OSO2CH3), 0.94 [s, 9H, SiC(CH3)3], 0.13, 0.10 [s, 6H,
2ꢂSiCH3]; 13C NMR (CDCl3, 75 MHz)
d 136.1–126.8 (C6H5), 115.0
(CN), 102.8 (C-5), 81.4 (C-2), 72.1 (C-4), 71.6 (C-3), 62.7 (C-1), 40.4
(OSO2CH3), 26.2 [SiC(CH3)3], 18.8 [SiC(CH3)3], ꢀ4.8, ꢀ4.9 [2ꢂSiCH3].
HRMS C19H29NO6SSiNa: calcd 450.1374, found 450.1383.
6. Van Nhien, A. N.; Leo´n, R.; Postel, D.; Carreiras, M. C.; Garcı´a, A. G.; Marco-
Contelles, J. J. Carbohydr. Chem. 2005, 24, 369.
7. (a) Wittenberger, S. J.; Donner, B. G. J. Org. Chem. 1993, 58, 4139; (b) For a review
on the synthesis of 5-substituted 1H-tetrazoles, see: Herr, R. J. Bioorg. Med.
Chem. 2002, 10, 3379.
4.15. 2-tert-Butyldimethylsilyl-3-hydroxymethylfuran (13)
8. Examples of 1,6-C–H insertions on alkylidenecarbenes are rare: (a) Feldman, K.
S.; Perkins, A. L. Tetrahedron Lett. 2001, 42, 6031; (b) Gilbert, J. C.; Blackburn, B.
K. Tetrahedron Lett. 1990, 31, 4727; (c) Brown, R. F. C.; Eastwood, F. W.; Har-
rington, K. J.; McMullen, G. L. Aust. J. Chem. 1974, 27, 2393.
9. (a) Van Nhien, A. N.; Soriano, E.; Marco-Contelles, J.; Postel, D. Carbohydr. Res.
2009, 344, 1605; (b) Van Nhien, A. N.; Cordonnier, R.; Le Bas, M.-D.; Delacroix,
S.; Soriano, E.; Marco-Contelles, J.; Postel, D. Tetrahedron 2009, 65, 9378.
10. (a) Ohira, S.; Sawamoto, T.; Yamato, M. Tetrahedron Lett. 1995, 36, 1537;
(b) Niizuma, S.; Shuto, S.; Matsuda, A. Tetrahedron 1997, 53, 13621.
11. Akiyama, M.; Awamura, T.; Kimura, K.; Hosomi, Y.; Kobayashi, A.; Tsuji, K.;
Kuboki, A.; Ohira, S. Tetrahedron Lett. 2004, 45, 7133.
Following the general method C, compound 12 (590 mg,
1.49 mmol), Bu2SnO (372 mg, 1.49 mmol), and TMSN3 (0.40 mL,
2.98 mmol) in toluene (14.9 mL) for 19 h at 100 ꢁC gave after flash
chromatography (EtOAc/cyclohexane, 1/9), compound 13 (63 mg,
20%), which showed spectroscopic data [1H NMR (CDCl3, 300 MHz)
d
7.61 (d, J4,5¼1.6 Hz,1H, H-5), 6.49 (d, 1H, H-4), 4.59 (s, 2H, CH2OH),
t
1.69 (s, 1H, OH), 0.92 (s, 9H, Bu), 0.31 (s, 6H, 2ꢂSiCH3); 13C NMR
(CDCl3, 75 MHz)
d 156.2 (C-3), 147.1 (C-5), 136.2 (C-2), 110.9 (C-1),
57.5 (CH2OH), 26.7 (tBu), 17.7 (Cq Bu), ꢀ5.3 (2ꢂCH3Si)] in accor-
t
12. (a) Hui, C. W.; Lee, H. K.; Wong, H. N. C. Tetrahedron Lett. 2001, 43, 123;
(b) Marco, J. L.; Hueso-Rodrı´guez, J. A. Tetrahedron Lett. 1988, 29, 2459.
13. Gorin, P. A. J.; Mazurek, M. Carbohydr. Res. 1978, 67, 479.
dance with the literature.17
14. Yoshimura, J.; Sato, K.; Funabashi, M. Bull. Chem. Soc. Jpn. 1979, 52, 2630.
´
´
15. Popsavin, V.; Benedekovic, G.; Popsavin, M.; Divjakovic, V.; Armbruster, T.
Tetrahedron 2004, 60, 5225.
4.16. Computational methods
16. Ihara, M.; Takino, Y.; Fukomoto, K.; Kametani, T. Tetrahedron Lett. 1988, 29, 4135.
17. (a) Bures, E. J.; Keay, B. A. Tetrahedron Lett. 1988, 29, 1247; (b) Keay, B. A.;
Bontront, J. L. J. Can. J. Chem. 1991, 69, 1326.
18. The intramolecular 1,5-oxygen-silicon insertion reactions are very well known:
(a) See Ref. 6; (b) Kim, S.; Cho, C.-M. Tetrahedron Lett. 1995, 36, 4845; (c) Hobley,
G.; Stuttle, K.; Wills, M. Tetrahedron 2003, 59, 4739.
19. Gilbert, J. C.; Giamalva, D. H.; Baze, M. E. J. Org. Chem. 1985, 50, 2557.
20. Taber, D. F.; Meagley, R. P.; Doren, D. J. J. Org. Chem. 1996, 61, 5723.
21. Wiberg, N.; Fischer, G.; Karampatses, P. Angew. Chem., Int. Ed. Engl. 1984, 23, 59.
22. (a) Miwa, K.; Aoyama, T.; Shioiri, T. Synlett 1994, 461; (b) Feldman, K. S.;
Wrobleski, M. L. J. Org. Chem. 2000, 65, 8659; (c) Gais, H.-J.; Reddy, L. R.; Babu,
G. S.; Raabe, G. J. Am. Chem. Soc. 2004, 126, 4859.
All calculations were performed with Gaussian 03.26 The
method applied for optimizing structures was B3LYP.27 The basis
set was 6ꢀ31þG(d,p) including polarization and diffuse functions.
Basis sets with diffuse functions are recommended for molecules
with lone pairs, for anions, and for systems with significant nega-
tive charge. All geometry optimizations were complete, and the
stationary points were identified as local minima or transition
states through the number of negative eigenvalues in their hessian
matrices. IRC calculations28 were used to connect the transition
state to its respective precedent and ensuing minima. Vibrational
frequency analyses were carried out also to obtain the zero-point
vibrational energies (ZPVEs) and thermodynamic parameters.
23. Sueda, T.; Nagaoka, T.; Goto, S.; Ochiai, M. J. Am. Chem. Soc. 1996, 118, 10141.
24. Grainger, R. S.; Owoare, R. B. Org. Lett. 2004, 6, 2961.
25. The rotation of the O–C–C–C dihedral angle provides conformers 4.17.
2 kcal molꢀ1 higher in energy than that depicted in Figure 3.
26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Fores-
man, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.;
Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.
M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian
03, Revision C.02; Gaussian: Wallingford CT, 2004.
Acknowledgements
´
A.N.V.N. and DP thanks the Conseil Regional de Picardie and the
`
Ministere de la Recherche for financial support. ES and JMC are
grateful to CESGA for supercomputer time.
References and notes
1. For reviews: (a) Stang, P. J. Chem. Rev. 1978, 78, 383; (b) Stang, P. J. Angew. Chem.,
Int. Ed. Engl. 1992, 31, 274; (c) Kirmse, W. Angew. Chem., Int. Ed. 1997, 36, 1164;
(d) Knorr, R. Chem. Rev. 2004, 104, 3795.
2. (a) Cunico, R. F. J. Organomet. Chem. 1976, 105, C29; (b) Stang, P. J.; Christensen,
S. B. J. Org. Chem. 1981, 46, 823; (c) Stang, P. J.; Fox, D. P. J. Org. Chem. 1977, 42,
1667; (d) Gilbert, J. C.; Giamalva, D. H. J. Org. Chem. 1983, 48, 5251; (e) Ochiai,
M.; Takaoka, Y.; Nagao, Y. J. Am. Chem. Soc. 1988, 110, 6565; (f) Kunishima, M.;
Hioki, K.; Tani, S.; Kato, A. Tetrahedron Lett. 1994, 35, 7253.
27. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648; (b) Lee, W.; Yang, R. G.; Parr, R. G.
Phys. Rev. B 1988, 37, 785.
28. (a) Fukui, K. Acc. Chem. Res. 1981, 14, 363; (b) Gonza´lez, C.; Schlegel, H. B. J. Phys.
Chem. 1990, 94, 5523.