4 mmol) was then introduced which instantaneously afforded a
yellow solution which turned colourless after 20 minutes stirring
at room temperature. This reaction mixture was ◦allowed to stirr
overnight and then placed in the freezer at (-20 C) and left for
24 hours. Colourless crystals were obtained (0.83 g, 54% for 2,
1.0 g, 61% for 3). NMR data for compound 2: 1H NMR (298 K,
C6D6) d 7.98 (2H, d, Hortho), 7.34 (2H, t, Hmeta), 7.19 (1H, t, Hpara),
1.93 (3H, s CH3), 1.77 (16H, s, broad, CH2 and CH3, TMEDA), -
under vacuum which afford 6 as a colourless oil. 1H NMR (298 K,
C6D6) d 7.32 (2H, d, Hortho), 7.03 (3H, m, Hmeta and Hpara), 4.59 (1H,
1
q (J3 = 7.4 Hz), CH), 2.66 (1H, s, broad, OH). 13C{ H} NMR
H-F
(298 K, C6D6) d 134.8, 129.3, 128.5, 127.7(Ph), 125.4 (q, (J1
=
C-F
1
292.3 Hz), CF3), 72.6 (q (J2 = 32.8 Hz), CH). 19F{ H} NMR
C-F
(298 K, C6D6): d -77.87.
1
Acknowledgements
0.61 (3H, s, Zn-CH3). 13C{ H} NMR (298 K, C6D6) d 147.8, 128.7,
127.5, 126.8 (Ph), 129.2 (q, J1C-F = 290.5 Hz, CF3), 76.4 (q, J2
=
C-F
We thank the Royal Society (University Research Fellowship to
E. H.), the Faculty of Science, University of Strathclyde (starter
grant to E. H.), and EPSRC (DTA award to M. D. M.) for their
generous sponsorship of this research.
25.1 Hz, C-O), 56.3, 46.6, 46.2 (CH3 and CH2, TMEDA), 28.7
1
(CH3), -16.7 (Zn-CH3). 19F{ H} NMR (298K, C6D6): d -79.63.
NMR data for compound 3:1H NMR (298K, C6D6) d 7.94 (2H,
d, Hortho), 7.36 (2H, t, Hmeta), 7.20 (1H, t, Hpara), 2.51, 2.22 (1H
each, m, CHH¢, Et), 2.01-1.77 (16H, m, broad, CH2 and CH3,
TMEDA), 1.57 (3H, t, CH3, Zn-Et), 0.83 (3H, t, CH3, Et), 0.38
Notes and references
1
(2H, q, CH2, Zn-Et). 13C{ H} NMR (298K, C6D6) d 147.1, 129.2,
1 (a) R. Filler, Y. Kobayashi and Y. L. Yagupolskii, Organofluo-
rine Compounds in Medicinal Chemistry and Biological Applications,
Elsevier, Amsterdam, Netherlands, 1993; (b) R. E. Banks, B. E. Smart
and J. C. Tatlow, Organofluorine Chemistry: Principles and Commercial
Applications, Plenum Press, New York, 1994; (c) R. D. Chambers, Ed,
Organofluorine Chemistry, Springer, Berlin, 1997; (d) T. Hiyama, K.
Kanie, T. Kusumoto, Y. Morizawa and M. Shimizu, Organofluorine
Compounds, Springer-Verlag, Berlinf-Heidelberg, 2000; (e) K. Mikami,
Y. Itoh and M. Yamanaka, Chem. Rev., 2004, 104, 1.
127.1, 126.4 (Ph), 129.8 (q, J1C-F = 291.7 Hz, CF3), 80.9 (q, J2
=
C-F
25.3 Hz, C-O), 57.8, 47.8, 47.1 (CH3 and CH2, TMEDA), 30.9
(CH2, Et), 14.9 (CH3, Zn-Et), 8.9 (CH3, Et), 1.3 (CH2, Zn-Et).
1
19F{ H} NMR (298 K, C6D6): d -79.05.
Synthesis of [(TMEDA)Zn(tBu){OC(CF3)(H)Ph}] (4)
ZntBu2 (0.36 g, 2 mmol) was added to a solution of TMEDA
(0.3 mL, 2 mmol) in toluene (10 mL) affording a colourless
solution. Trifluoroacetophenone (1) (0.28 mL, 2 mmol) was then
introduced affording a bright orange solution which was allowed
to stir at room temperature overnight. Volatiles were removed
under vacuum affording an orange oil which was analysed by
multinuclear NMR spectroscopy. Attempts to grow crystals of
4 using different solvent systems such as neat hexane were
unsuccessful which indicates that this compound is highly soluble
in organic solvents. 1H NMR (298 K, C6D6) d 7.67 (2H, d, Hortho),
7.24 (2H, t, Hmeta), 7.14 (1H, t, Hpara), 5.47 (1H, q (J3H-F = 7.4 Hz),
O-CH), 1.95 (16H, s, broad, CH2 and CH3, TMEDA), 1.19 (9H, s,
2 See for example: (a) M. L. P. Price and W. J. Jorgensen, J. Am. Chem.
Soc., 2000, 122, 9455; (b) F. Xu, R. A. Reamer, R. D. Tillyer, J. M.
Cummins, E. J. J. Grabowski, P. J. Reider, D. B. Collum and J. C.
Huffman, J. Am. Chem. Soc., 2000, 122, 11212; (c) B. Jiang and Y.-G.
Si, Angew. Chem., Int. Ed., 2004, 43, 216.
3 (a) M. E. Pierce, R. L. Parsons Jr., L. A. Radesca, Y. S. Lo, S. Silverman,
J. R. Moore, Q. Islam, A. Choudhury, J. M. D. Fortunak, D. Nguyen,
C. Luo, S. j. Morgan, W. P. Davis, P. M. Confalone, C.-Y. Chen, R. D.
Tillyer, L. Frey, L. Tan, F. Xu, D. Zhao, A. S. Thompson and E. G.
Corley, J. Org. Chem., 1998, 63, 8536; (b) J. W. Corbettt, S. S. Ko, J. D.
Rodgers, L. A. Gearhart, N. A. Magnus, L. T. Bacheler, S. Diamond,
S. Jeffrey, R. M. Klabe, B. C. Cordova, S. Garber, K. Logue, G. L.
Trainor, P. S. Anderson and S. K. Erickson-Vittanen, J. Med. Chem.,
2000, 43, 2019.
4 (a) P. Knochel and P. Jones, Organozinc Reagents, Oxford University
Press, Oxford, 1999; (b) For a recent review on enantioselective addition
of zinc reagents to ketones see: D. J. Ramon, M. Yus, Angew. Chem.
Int. Ed. 2004, 43, 284.
1
tBu). 13C{ H} NMR (298 K, C6D6) d 144.2, 128.4, 127.5, 126.6
(Ph), 128.0 (q, (J1 = 287.7 Hz), CF3), 78.8 (q (J2 = 27.8),
C-F
C-F
CH), 56.8, 47.2, 46.9 (CH3 and CH2, TMEDA), 34.5 (CH3, tBu),
5 K. Yearick and C. Wolf, Org. Lett., 2008, 10, 3915.
20.6 (C, tBu). 19F NMR (298 K, C6D6): d -77.85 (d).
6 Enantioselective synthesis of tertiary alcohols by reaction of diethylzinc
to trifluoromethyl ketones using polydentate N-donor ligands has
been also reported in the form of a patent by Sasaki et al, see: K.
Higashiyama, S. Sasaki, H. Kubo, T. Yamauchi, A. Ishii, M. Kanai,
Japanese Patent 200609692, April 13, 2006.
Synthesis of [(tBu)2Zn4{OC(CF3)(H)Ph}6] (5)
ZntBu2 (0.72 g, 4 mmol) was dissolved in 10 mL of n-hexane and
ketone 1 (0.56 mL, 4 mmol) was added affording a bright orange
solution. The solution was left stirring at room temperature for
2 hours, concentrated by removing some of the solvent under
vacuum. The Schlenk tube was placed in the freezer (-20 ◦C)
and left for several days. A batch of colourless crystals was
isolated (0.18 g, 13%, note maximum possible yield 16%). 1H
NMR (298 K, C6D6) d 7.77–6.82 (30H m, broad overlapping, Ph)
5.60–4.29 (6H, m, broad overlapping, CH), 1.36–0.57 (18H, m,
7 For selected references see: (a) H. R. L. Barley, W. Clegg, S. H. Dale,
E. Hevia, G. W. Honeyman, A. R. Kennedy and R. E. Mulvey, Angew.
Chem., Int. Ed., 2005, 44, 6018; (b) W. Clegg, S. H. Dale, R. W.
Harrington, E. Hevia, G. W. Honeyman and R. E. Mulvey, Angew.
Chem., Int. Ed., 2006, 45, 2374; (c) W. Clegg, S. H. Dale, E. Hevia,
L. M. Hogg, G. W. Honeyman, R. E. Mulvey and C. T. O’Hara, Angew.
Chem., Int. Ed., 2006, 45, 6548; (d) D. R. Armstrong, W. Clegg, S. H.
Dale, E. Hevia, L. M. Hogg, G. W. Honeyman and R. E. Mulvey,
Angew. Chem., Int. Ed., 2006, 45, 3775; (e) D. R. Armstrong, W. Clegg,
S. H. Dale, D. V. Graham, E. Hevia, L. M. Hogg, G. W. Honeyman,
A. R. Kennedy and R. E. Mulvey, Chem. Commun., 2007, 598; (f) D. R.
Armstrong, J. Garcia-Alvarez, D. V. Graham, G. W. Honeyman, E.
Hevia, A. R. Kennedy and R. E. Mulvey, Chem.–Eur. J., 2009, 15,
3800; (g) W. Clegg, B. Conway, E. Hevia, M. D. McCall, L. Russo and
R. E. Mulvey, J. Am. Chem. Soc., 2009, 131, 2375; (h) E. Hevia, A. R.
Kennedy, J. Klett and M. D. McCall, Chem. Commun., 2009, 3240.
8 (a) P. O’Brien, M. B. Hursthouse, M. Montevalli and J. R. Walsh,
J. Organomet. Chem., 1993, 449, 1; (b) D. V. Graham, E. Hevia, A. R.
Kennedy and R. E. Mulvey, Organometallics, 2006, 25, 3297.
9 Thus, the 1H NMR spectrum of free TMEDA in C6D6 solution displays
two singlets at 2.13 ppm (CH2N) and 2.08 ppm (NCH3), however,
1
broad overlapping, tBu). 19F{ H} NMR (298 K, C6D6): d -76.13
to -78.47 (broad overlapping).
Synthesis of PhC(H)(CF3)OH (6)
Isolated crystals of 5 (0.71 g, 0.5 mmol) were dissolved in toluene
(20 mL) and quenched with a saturated NH4Cl solution, extracted
with CH2Cl2 and dried with MgSO4. The solvents were removed
This journal is
The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 520–526 | 525
©