removed by rotary evaporation to afford 97 mg (49%) of 2 as a
red solid. MS (MALDI-TOF): m/z 911.9 (M+). 1H-NMR
(300 MHz, CDCl3, 25 1C): d = 9.91 (d, 1H, 3JPH = 13.7), 9.50
(d, 1H, J = 8.2), 8.94 (s, 1H), 8.82 (s, 1H), 8.69 (d, 1H, J =
8.1), 7.74–7.80 (m, 4H), 7.53–7.57 (m, 2H), 7.46–7.48 (m, 4H),
5.01 (m, 1H), 4.71 (m, 1H), 2.51–2.55 (m, 2H), 2.11–2.16
(m, 2H), 1.90–1.93 (m, 2H), 1.73–1.77 (m, 4H), 1.19–1.60
(m, 10H) ppm. 13C-NMR (75 MHz, CDCl3, 25 1C): d =
163.201, 162.621, 161.930, 161.824, 138.730, 137.903, 134.188,
134.030, 133.862, 132.741, 132.361, 132.249, 132.167, 131.638,
131.512, 130.474, 129.910, 129.143, 128.600, 128.495, 128.325,
127.462, 126.901, 126.577, 124.014, 123.622, 123.468, 122.103,
121.454, 54.424, 54.275, 29.067, 28.624, 26.471, 26.217, 25.347,
25.126 ppm. 31P-NMR (121 MHz, CDCl3, 25 1C): d =
2.9746 ppm.
Chem., 2005, 2, 349; (c) F. Yukruk, A. Dogan, H. Canpinar,
D. Guc and E. Akkaya, Org. Lett., 2005, 7, 2885.
3 (a) P. Ranke, B. leyl, J. Simmer, D. Haarer, A. Bacher and
H. Schmidt, Appl. Phys. Lett., 1997, 71, 1332; (b) C. Ego,
D. Marsitzky, S. Becker, J. Zhang, A. Grimsdale, K. Mullen,
¨
J. MacKenzie, C. Silva and R. Friend, J. Am. Chem. Soc., 2003,
125, 437; (c) J. Qu, J. Zhang, A. Grimsdale, K. Mullen, F. Jaiser,
¨
X. Yang and D. Neher, Macromolecules, 2004, 37, 8297.
4 (a) B. Jones, M. Ahrens, M. Yoon, A. Fachetti, T. Marks and
M. Wasielewski, Angew. Chem., Int. Ed., 2004, 43, 6363;
(b) W. Shin, H. Jeong, M. Kim, S. Jin, M. Kim, J. Lee, J. Lee
and Y. Gal, J. Mater. Chem., 2006, 16, 384; (c) T. Jung, B. Yoo,
S. Wang, A. Dodabalapur, B. Jones, A. Facchetti, M. Wasielewski
and T. Marks, Appl. Phys. Lett., 2006, 88, 183102; (d) Y. Wang,
Y. Chen, R. Li, S. Wang, W. Su, P. Ma, M. Wasielewski and
J. Jiang, Langmuir, 2007, 23, 5863.
5 (a) Q. Zhang, A. Cirpan, T. Russell and T. Emrick, Macro-
molecules, 2009, 42, 1079; (b) T. Edvinsson, C. Li, N. Pschirer,
J. Schoneboom, F. Eickemeyer, R. Sens, G. Boschloo,
¨
A. Herrmann, K. Mullen and A. Hagfeldt, J. Phys. Chem. C,
¨
A three-neck flask was charged with 1,6,7,12-tetrachloro-
perylene bisimide 3a (350 mg, 0.5 mmol), and the flask was
evacuated and backfilled with argon three times. After the
solvent of anhydrous THF has been added, the mixture was
stirred vigorously at room temperature for about 1 h. Sub-
sequently, the solution of lithium diphenylphosphide (DPPLi)
was added by syringe with a gentle flow of argon. TLC was
used to monitor the reaction. When the reaction was finished,
the solvent was removed by rotary evaporation at room
temperature. The crude product was purified by silica gel
column chromatography with CH2Cl2–THF (50 : 1) as eluent.
The main second band was collected, removal of the
solvent yielded 190 mg (42%) as a red-brown solid. MS
(MALDI-TOF): m/z 891.9 (M+). 1H-NMR (600 MHz,
CDCl3, 25 1C): d = 8.65 (s, 1H), 8.63 (s, 1H), 8.55 (s, 1H),
8.03–8.06 (m, 2H), 7.62–7.65 (m, 1H), 7.57–7.60 (m, 4H),
7.45–7.48 (m, 1H), 7.38–7.40 (m, 2H), 5.00 (m, 1H), 4.01
(m, 1H), 2.49–2.55 (m, 2H), 1.90–1.92 (m, 2H), 1.70–1.75
(m, 6H), 1.43–1.50 (m, 2H), 1.12–1.37 (m, 8H) ppm.
13C-NMR (75 MHz, CDCl3, 25 1C): d = 162.512, 161.669,
136.342, 135.842, 135.441, 133.317, 132.786, 132.650, 132.098,
131.904, 131.765, 130.933, 130.796, 128.760, 128.586, 128.476,
128.303, 123.987, 123.857, 123.680, 122.675, 55.359, 54.470,
29.068, 29.003, 28.780, 28.328, 26.454, 26.291, 26.062, 25.307,
25.174, 21.382 ppm. 31P-NMR (121 MHz, CDCl3, 25 1C):
d = 33.1312 ppm.
2007, 111, 15137; (c) X. Zhan, Z. Tan, B. Domercq, Z. An,
X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen and S. Marder,
J. Am. Chem. Soc., 2007, 129, 14319.
6 F. Wurthner, Chem. Commun., 2004, 1564.
¨
5592; (b) M. Wasielewski, J. Org. Chem., 2006, 71, 5051;
¨
7 (a) A. Grimsdale and K. Mullen, Angew. Chem., Int. Ed., 2005, 44,
(c) F. Wurthner, Pure Appl. Chem., 2006, 78, 2341.
¨
8 H. Langhals, Heterocycles, 1995, 40, 477.
9 H. Langhals, S. Demmig and H. Huber, Spectrochim. Acta, Part A,
1988, 44, 1189.
10 A. Bohm, H. Arms, G. Henning and P. Blaschka (BASF AG),
¨
Ger. Pat. Appl., DE 19 547 209 A1, 1997.
11 (a) P. Osswald, D. Leusser, D. Stalke and F. Wurthner, Angew.
¨
Chem., Int. Ed., 2005, 44, 250; (b) M. Ahrens, L. Sinks,
B. Rybtchinski, W. Liu, B. Jones, J. Giaimo, A. Gusev,
A. Goshe, D. Tiede and M. Wasielewski, J. Am. Chem. Soc.,
2004, 126, 8284; (c) Y. Li, N. Wang, H. Gan, H. Liu, H. Li, Y. Li,
X. He, C. Huang, S. Cui, S. Wang and D. Zhu, J. Org. Chem.,
2005, 70, 9686; (d) C. Zhao, Y. Zhang, R. Li, X. Li and J. Jiang,
J. Org. Chem., 2007, 72, 2402.
12 (a) T. Korenaga, T. Kosaki, R. Fukumura, T. Ema and T. Sakai,
Org. Lett., 2005, 7, 4915; (b) D. Liu, W. Gao, Q. Dai and
X. Zhang, Org. Lett., 2005, 7, 4907; (c) C. Chao, M. Leung,
Y. Su, K. Chiu, T. Lin, S. Shieh and S. Lin, J. Org. Chem.,
2005, 70, 4323; (d) Y. Yamada, Y. Maeda and Y. Uozumi, Org.
Lett., 2006, 8, 4259.
13 M. Sadrai, G. R. Bird, J. A. Potenza and H. J. Schugar, Acta
Crystallogr., Sect. C: Cryst. Struct. Commun., 1990, 46, 637.
14 (a) J. Swartz and J. Bunnett, J. Org. Chem., 1979, 44, 340;
(b) C. Galli and J. Bunnett, J. Am. Chem. Soc., 1981, 103, 7140.
15 (a) A. Senear, W. Valient and J. Wirth, J. Org. Chem., 1960, 25,
2001; (b) H. Relles and R. Schluenz, J. Am. Chem. Soc., 1974, 20,
6469.
16 (a) P. Rajasingh, R. Cohen, E. Shirman, J. Shimon and
B. Rybtchinski, J. Org. Chem., 2007, 72, 5973; (b) F. Wurthner,
Acknowledgements
¨
¨
ller, N. Kocher and
V. Stepanenko, Z. Chen, C. Saha-Mo
D. Stalke, J. Org. Chem., 2004, 69, 7933.
17 R. Ireland and D. Walba, Org. Synth., 1997, 56, 44.
18 A. Aguiar, H. Greenberg and K. Rubenstein, J. Org. Chem., 1963,
28, 2091.
This work was supported by the National Natural Science
Foundation of China (20771067 and 20531060) and Natural
Science Foundation of Shandong Province (2008BS02004).
19 (a) N. Soh, T. Ariyoshi, T. Fukaminato, K. Nakano, M. Irie and
T. Imato, Bioorg. Med. Chem. Lett., 2006, 16, 2943; (b) N. Soh,
T. Ariyoshi, T. Fukaminato, H. Nakajima, K. Nakano and
T. Imato, Org. Biomol. Chem., 2007, 5, 3762; (c) K. Akasaka,
H. Ohrui and H. Meguro, J. Chromatogr., B: Biomed. Appl., 1993,
622, 153.
20 J. Swartz and J. Bunnett, J. Org. Chem., 1979, 44, 340.
21 W. Qiu, S. Chen, X. Sun, Y. Liu and D. Zhu, Org. Lett., 2006, 8,
867.
References
1 (a) J. Hofkens, T. Vosch, M. Maus, F. Kohn, M. Cotlet, T. Weil,
¨
A. Herrmann, K. Mullen and F. De Schryver, Chem. Phys. Lett.,
¨
2001, 333, 255; (b) E. Lang, F. Wurthner and J. Kohler,
¨
¨
ChemPhysChem, 2005, 6, 935; E. Lang, F. Wurthner and
¨
J. Kohler, ChemPhysChem, 2006, 7, 292; (c) C. Jung, B. Muller,
¨
D. Lamb, F. Nolde, K. Mullen and C. Brauchle, J. Am. Chem.
¨
¨
¨
Soc., 2006, 128, 5283.
2 (a) C. Kohl, T. Weil, J. Qu and K. Mullen, Chem.–Eur. J., 2004,
22 (a) M. Ahrens, M. Tauber and M. Wasielewski, J. Org. Chem.,
2006, 71, 2107; (b) B. Sun, Y. Zhao, X. Qiu, C. Han, Y. Yu and
Z. Shi, Supramol. Chem., 2008, 20, 537.
¨
10, 5297; (b) S. Krauss, M. Lysetska and F. Wurthner, Lett. Org.
¨
ꢁc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2010
64 | New J. Chem., 2010, 34, 61–64