C O M M U N I C A T I O N S
Scheme 1. Stoichiometric Reduction of 3 or 4 to CH3OH
adducts tBu3PCO2(B(C6F5)3) and Mes2PCH2CH2B(C6F5)2(CO2)
which rapidly lose CO2 at 80 and -20 °C, respectively.15 The
formation of two Al-O in 3 and 4, as opposed to one B-O bond
in the latter cases, could explain this enhanced stability. This is a
rare example of double activation of CO2, although similar systems
have been proposed.21
In summary, we have described the rapid, room temperature
conversion of FLP-activated CO2 to CH3OH using ammonia borane
as the hydrogen source. The mechanism of this reduction and the
development of new catalytic FLP systems are the subject of current
efforts.
Acknowledgment. D.W.S. gratefully acknowledges the financial
support of NSERC of Canada, the award of a Canada Research
Chair, and a Killam Research Fellowship. G.M. is grateful for the
support of an Ontario Graduate Scholarship.
Supporting Information Available: Experimental, NMR, analytical,
and X-ray crystallographic data. This material is available free of charge
Figure 1. Synthesis of 1-4 and POV-ray depictions of 2 and 4; H atoms
are omitted. C, black; P, orange; F, pink; Al, teal; Br, scarlet.
References
(1) Ho¨nisch, B.; Hemming, N. G.; Archer, D.; Siddall, M.; McManus, J. F.
Science 2009, 324, 1551.
The reaction of 3 or 4 with excess ammonia borane (H3NBH3)
(3 equiv) was initially monitored by 31P NMR spectroscopy. In
less than 15 min, the resonance arising from the starting material
was replaced with a new signal at -26 ppm with a P-H coupling
constant of 475 Hz. This was attributable to generation of the cation
[Mes3PH]+. To garner further information on the nature of this
(2) IPCC, Climate Change 2007: Synthesis Report. IPCC; Geneva, 2007; p
52.
(3) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe,
M.; Yaghi, O. M. Science 2008, 319, 939.
(4) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. ReV. 2007, 107, 2365.
(5) (a) Stephan, D. W. Dalton Trans. 2009, 3129. (b) Stephan, D. W. Org.
Biomol. Chem. 2008, 6, 1535. (c) Stephan, D. W.; Erker, G. Angew. Chem.,
Int. Ed. 2010, 49, 46–76.
(6) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science
2006, 314, 1124.
(7) Dureen, M. A.; Lough, A.; Gilbert, T. M.; Stephan, D. W. Chem. Commun.
2008, 4303.
(8) Chase, P. A.; Stephan, D. W. Angew. Chem., Int. Ed. 2008, 47, 7433.
(9) Welch, G. C.; Cabrera, L.; Chase, P. A.; Hollink, E.; Masuda, J. D.; Wei,
P. R.; Stephan, D. W. Dalton Trans. 2007, 3407.
(10) McCahill, J. S. J.; Welch, G. C.; Stephan, D. W. Angew. Chem., Int. Ed.
2007, 46, 4968.
(11) Dureen, M. A.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 8396.
(12) (a) Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008, 1701.
(b) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem.,
Int. Ed. 2007, 46, 8050. (c) Sumerin, V.; Schulz, F.; Nieger, M.; Leskela,
M.; Repo, T.; Rieger, B. Angew. Chem., Int. Ed. 2008, 47, 6001.
(13) Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fro¨hlich, R.; Erker, G.
Angew. Chem., Int. Ed. 2008, 47, 7543.
(14) Wang, H.; Fro¨hlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, 5966.
(15) Mo¨mming, C. M.; Otten, E.; Kehr, G.; Fro¨hlich, R.; Grimme, S.; Stephan,
D. W.; Erker, G. Angew. Chem., Int. Ed. 2009, 48, 6643.
(16) Otten, E.; Neu, R. C.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 9918.
(17) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.;
Butterworth-Heinemann: Oxford; Boston, MA, 1997; p 1341.
(18) Geier, S. J.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 3476.
(19) See Supporting Information.
reaction, the isotopologues 13C-3 and 13C-4 were prepared. The 13
C
resonances for these species are observed at 172 and 173 ppm,
each with a JP-C of 123 and 119 Hz, respectively. Upon reaction
of 13C-3 or 13C-4 with H3NBH3, 11B NMR spectral data indicate
dehydrogenation of H3NBH3 to borazine and other products22 while
the 31P NMR spectra indicate the formation of [Mes3PH]+. The
13C NMR spectra showed the loss of the CO2 signal derived from
3/4 and the appearance of approximately 4 quartet resonances
between 50-65 ppm with a JC-H of 146-149 Hz.19 Integration of
these signals shows they account for approximately 60 and 64%
of the 13C in the precursor. These data infer the formation of Al-
methoxy species which are unstable with respect to ligand
redistribution (Scheme 1). This view is supported by the isolation
of crystals of [Mes3PH][AlBr4]19 from a reaction mixture, albeit
in low yield.
Following quenching of the reaction with D2O, the organic phase
was shown to contain free PMes3 by 31P NMR spectroscopy while
the aqueous phase exhibited a 13C resonance as a quartet at 49 ppm
(JC-H ) 142 Hz), identical to an authentic sample of CH3OH in
D2O.19 The yield of CH3OH, quantified by integration relative to
an internal standard, 1,4-dioxane, showed average extracted yields
of 37-51%.19 While the second O-atom is thought to be incorpo-
rated into Al byproducts, its precise fate remains unknown at this
time. Nonetheless these data demonstrate the reduction of the FLP-
activated CO2 to CH3OH. In a very recent report, Ashley et al.23
showed the tetramethylpiperidine/B(C6F5)3 FLP effected conversion
of CO2/H2 to CH3OH in 24% yield in 6 days at 160 °C.
(20) Chu, P. J.; De Mallmann, A.; Lunsford, J. H. J. Phys. Chem. 1991, 95,
7362.
(21) (a) Olah, G. A.; To¨ro¨k, B.; Joschek, J. P.; Bucsi, I.; Esteves, P. M.; Rasul,
G.; Surya Prakash, G. K. J. Am. Chem. Soc. 2002, 124, 11379. (b)
Schumann, H.; Girgsdies, F.; Heymer, B.; Kaufmann, J.; Marschall, C.;
Wassermann, W. Z. Anorg. Allg. Chem. 2007, 633, 2268.
(22) (a) Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. Chem. Soc.
ReV. 2009, 38, 279. (b) Marder, T. B. Angew. Chem., Int. Ed. 2007, 46,
8116. (c) Stephens, F. H.; Pons, V.; Baker, R. T. Dalton Trans. 2007, 2613.
(23) See Supporting Information.
(24) Ashley, A. E.; Thompson, A. L.; O’Hare, D. Angew. Chem., Int. Ed. 2009,
48, 9839.
JA9104792
9
J. AM. CHEM. SOC. VOL. 132, NO. 6, 2010 1797