use of expensive but often less reactive8 fluorobenzene
organometallics in the synthesis of polyfluorobiaryls useful
to material9 and medicinal10 sciences. The new reactions also
provide a practical method complementary to Fagnou’s11 and
Daugulis’s12 fluorobiaryl synthesis through direct C-H
arylation of polyfluoroarene. Furthermore, through compu-
tational analysis we show that the Pd-catalyzed decarboxy-
lative cross coupling has a major mechanistic difference as
compared to the Cu-catalyzed versions.
Our work started with the decarboxylative coupling of
potassium pentafluorobenzoate with aryl chlorides. Note that
there were two literature examples5d,g for Pd-catalyzed
decarboxylative coupling of pentafluorobenzoic acid with
4-iodoanisole. Through tests (Table 1) it is found that in
many solvents (entries 1-4) the desired coupling reaction
does not proceed well. Only when diglyme is used as the
solvent (entry 5), the reaction takes place readily (yield )
88%) with a simple ligand (PCy3). The use of more popular
Ar-Cl activation ligands such as tBu3P, S-Phos, and Dave-
Phos13 does not produce a higher yield (entries 6-9),
whereas the use of other Pd salts (entries 10-12) gives good
results comparable to that of Pd(OAc)2. Decrease of the Pd
loading to 1 mol % (entry 13) affords a slightly lower yield
of 86%. Moreover, the same catalyst system can also be
applied to o-tolylbromide (entry 14). It is interesting that a
less electron-rich ligand (i.e., P(o-Tol)3) is more effective
for o-tolylbromide than PCy3 (entry 15).
Table 1. Pd-Catalyzed Decarboxylative Cross Coupling of
Potassium Pentafluorobenzoate with o-Tolylhalidea
entry
X
Pd source
ligand
P(Cy)3
P(Cy)3
P(Cy)3
P(Cy)3
P(Cy)3
P(t-Bu)3
S-Phos
solvent
NMP
DMA
DMF
yield %b
1
2
3
4
5
6
7
8
9
10
11
12
13c
14
15
Cl Pd(OAc)2
Cl Pd(OAc)2
Cl Pd(OAc)2
Cl Pd(OAc)2
Cl Pd(OAc)2
Cl Pd(OAc)2
Cl Pd(OAc)2
Cl Pd(OAc)2
Cl Pd(OAc)2
Cl Pd2 (dba)3
Cl Pd(TFA)2
trace
trace
11
Mesitylene n.r.
diglyme
diglyme
diglyme
88
79
85
28
15
84
85
73
86
87
91
(3) (a) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc.
2002, 124, 11250. (b) Tanaka, D.; Myers, A. G. Org. Lett. 2004, 6, 433.
(c) Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127,
10323.
Dave-Phos diglyme
JohnPhos
P(Cy)3
diglyme
diglyme
diglyme
diglyme
diglyme
diglyme
diglyme
(4) Forgione, P.; Brochu, M.-C.; St-Onge, M.; Thesen, K. H.; Bailey,
M. D.; Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350.
(5) (a) Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J. H.; Jung, H. M.;
Lee, S. Org. Lett. 2008, 10, 945. (b) Moon, J.; Jang, M.; Lee, S. J. Org.
Chem. 2009, 74, 1403. (c) Becht, J.-M.; Le Drian, C. Org. Lett. 2008, 10,
3161. (d) Becht, J.-M.; Catala, C.; Le Drian, C.; Wagner, A. Org. Lett.
2007, 9, 1781. (e) Wang, Z. Y.; Ding, Q. P.; He, X. D.; Wu, J. Org. Biomol.
Chem. 2009, 7, 863. (f) Wang, Z. Y.; Ding, Q. P.; He, X. D.; Wu, J.
Tetrahedron 2009, 65, 4635. (g) Voutchkova, A.; Coplin, A.; Leadbeater,
N. E.; Crabtree, R. H. Chem. Commun. 2008, 6312. (h) Wang, C.; Piel, I.;
Glorius, F. J. Am. Chem. Soc. 2009, 131, 4194. (i) Shang, R.; Fu, Y.; Li,
J. B.; Zhang, S. L.; Guo, Q. X.; Liu, L. J. Am. Chem. Soc. 2009, 131,
5738.
P(Cy)3
Cl Pd(MeCN)2Cl2 P(Cy)3
Cl Pd(OAc)2
Br Pd(OAc)2
Br Pd(OAc)2
P(Cy)3
P(Cy)3
P(o-Tol)3
a All the reactions were carried out at 0.25 mmol scale in 0.5 mL of
solvent. b GC yields using biphenyl as the internal standard. c 1 mol % of
Pd(OAc)2 and 2 mol % of ligand were used.
(6) (a) Waetzig, S. R.; Rayabarupu, D. K.; Weaver, J. D.; Tunge, J. A.
Angew. Chem., Int. Ed. 2006, 45, 4977. (b) Waetzig, S. R.; Tunge, J. A.
J. Am. Chem. Soc. 2007, 129, 14860. (c) Fields, W. H.; Khan, A. K.; Sabat,
M.; Chruma, J. J. Org. Lett. 2008, 10, 5131. (d) Pi, S.-F.; Tang, B.-X.; Li,
J.-H.; Liu, Y.-L.; Liang, Y. Org. Lett. 2009, 11, 2309. (e) Bi, H.-P.; Zhao,
L.; Liang, Y.-M.; Li, C.-J. Angew. Chem., Int. Ed. 2009, 48, 792. (f) Bi,
H.-P.; Chen, W.-W.; Liang, Y.-M.; Li, C.-J. Org. Lett. 2009, 11, 3246. (g)
Duan, Z.; Ranjit, S.; Zhang, P.; Liu, X. Chem.sEur. J. 2009, 15, 3666. (h)
Yeagley, A. A.; Lowder, M. A.; Chruma, J. J. Org. Lett. 2009, 11, 4022.
(i) Hu, P.; Kan, J.; Su, W.; Hong, M. Org. Lett. 2009, 11, 2341. (j) Yu,
W.-Y.; Sit, W.; Zhou, Z.; Chan, A. S.-C. Org. Lett. 2009, 11, 3174. (k)
Miyasaka, M.; Fukushima, A.; Satoh, T.; Hirano, K.; Miura, M. Chem.sEur.
J. 2009, 15, 3674.
Extending the model reaction to a variety of substrates
showed that both electron-rich and electron-poor aryl bro-
mides and chlorides can be successfully converted tolerating
a range of functional groups (Table 2). In several cases
(entries 1, 4, and 15), aryl triflates (but not aryl tosylates,
see entry 13) can also be successfully converted. Ortho-
substitution can be tolerated in the transformation (entries
3, 5, 7, and 8). In addition, some heteroaryl bromides and
chlorides can be used to produce the corresponding poly-
fluorobiaryls (entries 21 and 22).
The scope of the reaction with respect to fluoroarene is
shown in Table 3, where a higher loading of Pd catalyst is
required. Under the optimized conditions, potassium monof-
luorobenzoate cannot be efficiently converted, unless an
ortho-Cl or ortho-CF3 group is added (entries 1-3). Once
two ortho-F atoms are added, decarboxylative coupling of
potassium bisfluorobenzoate can proceed smoothly with both
4-methoxyphenyl bromide and chloride (entries 4-7). Simi-
lar reactions are also observed with tri- and tetrafluoroben-
zoates carrying two ortho-F atoms (entries 9-12), but not
with a trifluorobenzoate carrying a single ortho-F (entry 8).
Note that in entries 9 and 10 some di- or triarylated byproduct
are observed. For entry 9, the yields for mono-, di-, and
triarylated products are 14%, 21%, and 49%, respectively.
(7) Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Angew.
Chem., Int. Ed. 2009, 48, 9350.
(8) Sakai et al. developed a special protocol for the Suzuki coupling
reaction of pentafluorophenylboronic acid, which is an inactive substrate
under normal conditions. See: Korenaga, T.; Kosaki, T.; Fukumura, R.;
Ema, T.; Sakai, T. Org. Lett. 2005, 7, 4915.
(9) (a) Nitschke, J. R.; Tilley, T. D. J. Am. Chem. Soc. 2001, 123, 10183.
(b) Zacharias, P.; Gather, M. C.; Rojahn, M.; Nuyken, O.; Meerholz, K.
Angew. Chem., Int. Ed. 2007, 46, 4388.
(10) (a) Mewshaw, R. E.; Edsall, R. J., Jr.; Yang, C.; Manas, E. S.; Xu,
Z. B.; Henderson, R. A.; Keith, J. C., Jr.; Harris, H. A. J. Med. Chem.
2005, 48, 3953. (b) de Candia, M.; Liantonio, F.; Carotti, A.; De Cristofaro,
R.; Altomare, C. J. Med. Chem. 2009, 52, 1018.
(11) (a) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am.
Chem. Soc. 2006, 128, 8754. (b) Lafrance, M.; Shore, D.; Fagnou, K. Org.
Lett. 2006, 8, 5097.
(12) (a) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404.
(b) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128. (c) Do,
H.-Q.; Kashif Khan, R. M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130,
15185.
(13) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47,
6338.
Org. Lett., Vol. 12, No. 5, 2010
1001