Organic Letters
Letter
(3) Knapp, D. M.; Gillis, E. P.; Burke, M. D. A General Solution for
Unstable Boronic Acids: Slow-Release Cross-Coupling from Air-
Stable MIDA Boronates. J. Am. Chem. Soc. 2009, 131, 6961−6963.
(4) Lozada, J.; Liu, Z.; Perrin, D. M. Base-Promoted Protodeboro-
nation of 2,6-Disubstituted Arylboronic Acids. J. Org. Chem. 2014, 79,
5365−5368.
Table 3. Reduced Catalyst Loading and Buchwald
Complexes
(5) Cox, P. A.; Reid, M.; Leach, A. G.; Campbell, A. D.; King, E. J.;
Lloyd-Jones, G. C. Base-Catalyzed Aryl-B(OH)2 Protodeboronation
Revisited: From Concerted Proton Transfer to Liberation of a
Transient Aryl Anion. J. Am. Chem. Soc. 2017, 139, 13156−13165.
(6) Cox, P. A.; Leach, A. G.; Campbell, A. D.; Lloyd-Jones, G. C.
Protodeboronation of Heteroaromatic, Vinyl, and Cyclopropyl
Boronic Acids: PH-Rate Profiles, Autocatalysis, and Disproportiona-
tion. J. Am. Chem. Soc. 2016, 138, 9145−9157.
b
b
time
(h)
conv of 2b
yield of 3b
a
entry
[Pd]
X
(%)
(%)
1
2
3
4
5
6
7
8
9
Pd1, XPhos
Pd1, XPhos
Pd1, XPhos
SPhos Pd G3 1.0
XPhos Pd G2 1.0
SPhos Pd G3 0.1
XPhos Pd G2 0.1
XPhos Pd G3 0.1
XPhos Pd G4 0.1
0.5
0.1
0.05
72
72
72
24
24
120
120
120
120
>99
83
29
>99
>99
40
34
61
27
93
80
23
94
95
38
32
61
25
(7) Rodríguez, N.; Gooßen, L. J. Decarboxylative Coupling
Reactions: A Modern Strategy for C−C-Bond Formation. Chem.
Soc. Rev. 2011, 40, 5030.
(8) Patra, T.; Maiti, D.; Wei, Y.; Hu, P.; Zhang, M.; Su, W.
Decarboxylation as the Key Step in C−C Bond-Forming Reactions.
Chem. - Eur. J. 2017, 23, 7382−7401.
(9) Gooßen, L. J.; Deng, G.; Levy, L. M. Synthesis of Biaryls via
Catalytic Decarboxylative Coupling. Science 2006, 313, 662−664.
(10) Myers, A. G.; Tanaka, D.; Mannion, M. R. Development of a
Decarboxylative Palladation Reaction and Its Use in a Heck-Type
Olefination of Arene Carboxylates. J. Am. Chem. Soc. 2002, 124,
11250−11251.
a
Reaction conditions: benzoate 1a (0.3 mmol), aryl chloride 2b (0.2
b
mmol), [Pd] (2.0−0.1 μmol), dioxane (0.2 M). Yield determined by
(11) Cornella, J.; Larrosa, I. Decarboxylative Carbon-Carbon Bond-
Forming Transformations of (Hetero)Aromatic Carboxylic Acids.
Synthesis 2012, 44, 653−676.
calibrated GC−FID analysis using biphenyl as an internal standard.
Reactions were run in duplicate or triplicate, and the average yield is
reported.
(12) Zhang, T.; Wang, N. X.; Xing, Y. Advances in Decarboxylative
Oxidative Coupling Reaction. J. Org. Chem. 2018, 83, 7559−7565.
(13) Chen, L.; Ju, L.; Bustin, K. A.; Hoover, J. M. Copper-Catalyzed
Oxidative Decarboxylative C-H Arylation of Benzoxazoles with 2-
Nitrobenzoic Acids. Chem. Commun. 2015, 51, 15059−15062.
(14) Crovak, R. A.; Hoover, J. M. A Predictive Model for the
Decarboxylation of Silver Benzoate Complexes Relevant to Decar-
boxylative Coupling Reactions. J. Am. Chem. Soc. 2018, 140, 2434−
2437.
(15) Honeycutt, A. P.; Hoover, J. M. Nickel-Catalyzed Oxidative
Decarboxylative Annulation for the Synthesis of Heterocycle-
Containing Phenanthridinones. Org. Lett. 2018, 20, 7216−7219.
(16) Honeycutt, A. P.; Hoover, J. M. Nickel-Catalyzed Oxidative
Decarboxylative (Hetero)Arylation of Unactivated C−H Bonds: Ni
and Ag Synergy. ACS Catal. 2017, 7, 4597−4601.
(17) Cornella, J.; Lu, P.; Larrosa, I. Intermolecular Decarboxylative
Direct C-3 Arylation of Indoles with Benzoic Acids. Org. Lett. 2009,
11, 5506−5509.
(18) Littke, A. F.; Fu, G. C. Palladium-Catalyzed Coupling
Reactions of Aryl Chlorides. Angew. Chem., Int. Ed. 2002, 41,
4176−4211.
only CO2 and NaCl as stoichiometric byproducts. Further
developments will be reported in due course.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures and data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(19) Hills, I. D.; Netherton, M. R.; Fu, G. C. Toward an Improved
Understanding of the Unusual Reactivity of Pd0/Trialkylphosphane
Catalysts in Cross-Couplings of Alkyl Electrophiles: Quantifying the
Factors That Determine the Rate of Oxidative Addition. Angew.
Chem., Int. Ed. 2003, 42, 5749−5752.
Notes
The authors declare no competing financial interest.
(20) Alcazar-Roman, L. M.; Hartwig, J. F. Mechanistic Studies on
Oxidative Addition of Aryl Halides and Triflates to Pd(BINAP)2 and
Structural Characterization of the Product from Aryl Triflate Addition
in the Presence of Amine. Organometallics 2002, 21, 491−502.
(21) Grushin, V. V.; Alper, H. Transformations of Chloroarenes,
Catalyzed by Transition-Metal Complexes. Chem. Rev. 1994, 94,
1047−1062.
(22) Gooßen, L. J.; Zimmermann, B.; Knauber, T. Palladium/
Copper-Catalyzed Decarboxylative Cross-Coupling of Aryl Chlorides
with Potassium Carboxylates. Angew. Chem., Int. Ed. 2008, 47, 7103−
7106.
ACKNOWLEDGMENTS
Financial support was provided by the University of
Minnesota.
■
REFERENCES
■
(1) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling
Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457−
2483.
(2) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.;
Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical
Contextual Perspective to the 2010 Nobel Prize. Angew. Chem., Int.
Ed. 2012, 51, 5062−5085.
(23) Shang, R.; Xu, Q.; Jiang, Y.-Y.; Wang, Y.; Liu, L. Pd-Catalyzed
Decarboxylative Cross Coupling of Potassium Polyfluorobenzoates
D
Org. Lett. XXXX, XXX, XXX−XXX