selection of the solvent. In doing so, the experimental design,
as well as the conclusions, should make use of previous work
in this area, particularly the extensive research on the solution
properties of electrolytes and the thermodynamics of ion
complexation involving other macrocycles. Calixpyrroles do
not stand on their own. The effect of the solvent is expected,
since it is mainly the result of the solvation changes that the
species participating in the binding process moves from one
solvent to another.
7 A. F. Danil de Namor and R. Khalife, J. Phys. Chem. B, 2008,
112(49), 15766.
8 A. F. Danil de Namor, A. Aguilar-Cornejo, R. Soualhi,
M. Shehab, K. B. Nolan, N. Ouazzani and L. Mandi, J. Phys.
Chem. B, 2005, 109, 14735.
9 D. D. Perrin and W. L. F. Armarego, Purification of Laboratory
Chemicals, Pergamon Press, Ltd, Oxford, UK, 2nd edn, 1988.
10 L. Bonomo, E. Solari, G. Toraman, R. Scopelliti, M. Laatronico
and C. Floriani, Chem. Commun., 1999, 2413.
11 P. Anzenbacher, Jr, K. Jursikova, V. M. Lynch, P. A. Gale and
J. L. Sessler, J. Am. Chem. Soc., 1999, 121, 11020.
12 J. J. Christensen, R. M. Izatt and L. D. Hansen, Rev. Sci. Instrum.,
1965, 36, 779.
(ii) Once again, the selective behaviour of calix[4]pyrrole
and its derivatives for anions and the factors contributing to it
have been further corroborated.
(ii) Receptors 1 and 3 interact with Hg2+, while other
13 E. Wilson and D. F. Smith, Anal. Chem., 1969, 41, 1903.
14 A. F. Danil de Namor and M. Shehab, J. Phys. Chem. B, 2005,
109, 17440.
15 A. F. Danil de Namor and I. Abbas, J. Phys. Chem. B, 2007, 111,
5803.
cations tested are discriminated against.
(iii) Receptor 1 can be classified as a ditopic receptor given
its interaction with an anion (Fꢁ) and a cation (Hg2+).
Attempts to establish a cooperative effect of cation and anion
by carrying out experimental work with HgF2 is being
considered. This is by no means a trivial issue. There are
experimental limitations. An obvious one is that high concen-
trations of HgF2 are required, given that in this particular
case, the first ion (if dissociation of HgF2 takes place at all in
acetonitrile) to complex will attract its counter-ion (ion–ion
interactions are stronger than ion–dipole or hydrogen bond
formation) given that ion pair formation will occur. In addition,
the use of high concentrations of HgF2 may lead to deproto-
nation of the calixpyrrole and the formation of HFꢁ as
discussed above. Other approaches are now being considered.
16 A. F. Danil de Namor, M. Shehab, R. Khalife and I. Abbas,
J. Phys. Chem. B, 2007, 111, 12177.
17 A. F. Danil de Namor, I. Abbas and H. Hammud, J. Phys. Chem.
B, 2007, 111, 3098.
18 B. G. Cox and H. Schneider, Coordination and Transport Properties of
Macrocyclic Compounds in Solution, Elsevier, New York, 1992.
19 A. F. Danil de Namor, R. M. Cleverley and M. L. Zapata-
Ormachea, Chem. Rev., 1998, 98, 2495.
20 A. F. Danil de Namor, in Calixarenes 2001, ed. Z. Asfari,
V. Bohmer, J. Harrowfield and J. Vicens, Kluwer Academic
¨
Publishers, Dordrecht, Netherlands, 2001, ch. 19.
21 A. F. Danil de Namor and I. Abbas, Calixpyrrole-Fluoride Inter-
actions. From Fundamental Research to the Applications in the
Environmental Field, in Advances in Fluorine Science, ed.
A. Tressaud, Elsevier Science, New York, 2006, vol. II, ch. 3.
22 A. K. Covington and T. Dickinson, Physical Chemistry of Organic
Solvent Systems, Plenum Press, New York, 1973.
23 Y. Marcus, Ion Solvation, Wiley, Chichester, 1985.
24 O. Popovych and R. Tomkins, Nonaqueous Solution Chemistry,
John Wiley & Sons, New York, 1981.
25 A. F. Danil de Namor, R. Traboulssi, F. Fernandez Salazar,
V. Dianderas de Acosta, I. Fernandez de ViVizcardo and
J. Munoz Portugal, J. Chem. Soc., Faraday Trans. 1, 1989, 85,
2705.
26 Y. Marcus and G. Hefter, Chem. Rev., 2006, 106, 4585.
27 F. P. Schmidtchen, Org. Lett., 2002, 4, 421.
Acknowledgements
The authors thank the European Commission for the financial
support provided to carry out this work under Contract
INCO-CT-2004-509159.
28 W. Dehaen, P. A. Gale, S. E. Garcia-Garrido, M. Kostermans and
M. E. Light, New J. Chem., 2007, 31, 691.
References
29 M. Biocchi, L. Boca, D. E. Go
E. Monzani, J. Am. Chem. Soc., 2004, 126, 16507.
30 A. B. Descalzo, K. Rurack, H. Weisshoff, R. Martinez-Ma
M. D. Marcos, P. Amoros, K. Hoffmann and J. Soto, J. Am.
Chem. Soc., 2005, 127, 184.
´
mez, L. Fabbrizzi, M. Licchelli and
1 A. Baeyer, Ber. Dtsch. Chem. Ges., 1886, 19, 2184.
2 C. Stern, F. Franceschi, E. Solari, C. Floriani, E. Nazzareno and
R. Scopelliti, J. Organomet. Chem., 2000, 593–594, 86.
3 P. A. Gale, J. L. Sessler, V. Kral and V. Lynch, J. Am. Chem. Soc.,
1996, 118, 5140.
4 A. F. Danil de Namor and M. Shehab, J. Phys. Chem. B, 2003,
107, 6462.
5 A. F. Danil de Namor and M. Shehab, J. Phys. Chem. A, 2004,
108, 7324.
´
nez,
´
31 R. Nishiyabu and P. Anzenbacher, Jr, Org. Lett., 2006, 8(3),
359.
32 B. G. Cox, G. R. Hedwig, A. J. Parker and D. W. Watts, Aust. J.
Chem., 1974, 27, 477.
33 A. F. Danil de Namor, S. Chahine, D. Kowalska, E. E. Castellano
and O. E. Piro, J. Am. Chem. Soc., 2002, 124, 12824.
34 A. F. Danil de Namor, S. Chahine, E. E. Castellano and
O. E. Piro, J. Phys. Chem. B, 2004, 108, 11384.
6 J. L. Sessler, D. E. Gross, W.-S. Cho, V. M. Lynch,
F. P. Schmidtchen, G. W. Bates, M. E. Light and P. A. Gale,
J. Am. Chem. Soc., 2006, 128, 12281.
ꢀc
This journal is the Owner Societies 2010
760 | Phys. Chem. Chem. Phys., 2010, 12, 753–760