B. Yi et al. / Journal of Molecular Catalysis A: Chemical 315 (2010) 82–85
85
1, CH2Cl2); 1H NMR (300 MHz, CDCl3): ı 7.74–7.10 (m, 18H),
7.02–6.99 (m, 2H), 6.55 (s, 2H), 4.19–4.07 (m, 1H), 3.94–3.90
(m, 1H), 3.89–3.78 (m, 6H), 3.59 (pseudo-t, J = 13.5 Hz, 1H), 3.32
(pseudo-t, J = 11.4 Hz, 1H), 2.90–2.85 (m, 1H), 2.76–2.71 (m, 1H),
1.72–1.61 (m, 6H), 1.38–1.31 (m, 42H), 0.81 (t, J = 7.1 Hz, 9H); 13C
NMR (75 MHz, CDCl3):ı 168.8, 151.9, 138.3, 134.5 (m), 132.7 (m),
132.4 (m), 130.6, 128.4, 128.2, 127.6 (m), 104.6, 72.4, 68.1, 50.4
(m), 47.4 (m), 38.7 (m), 36.3 (m), 30.9, 29.3, 28.7, 28.6, 28.5, 28.4,
28.3, 25.0, 21.7, 13.1; 31P NMR (121 MHz, CDCl3): ı −11.7, −12.4
(J = 7 Hz); IR (KBr): v (cm−1) 1635.5, 1580.0; MALDI-TOF MS: m/z
1012.8 (M+); HRMS (ESI) m/z found: 1012.6508, C65H91NO4P2
([M+H]+) requires: 1012.6522.
reaction mixture under inert atmosphere to induce complete phase
separation. The cyclohexane layer, which contained the catalyst,
was separated, and reused in the next catalytic cycle after dried
with anhydrous MgSO4. The conversion and ee value of product
were determined by chromatography using a 25 m Chiralsi L-Val
capillary column after the acids had been transformed into the
corresponding methyl esters.
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (20972045), Provincial Natural Science Foundation of Hunan
(No. 06JJ5017), and the foundation for the Returned Overseas Chi-
nese Scholars of Ministry of Education (20071108) for financial
supports.
Compound 10C-G2:
a procedure similar to that for the
preparation of 10C-G1 was used to prepare 10C-G2 from periph-
erally decyl-functionalized generation 2 acid and (3R,4R)-pyrphos
hydrochloride. The resulting residue was purified by column chro-
matography on silica gel (petroleum ether:ethyl acetate 2:1) to
afford 10C-G2 as white grease. Yield 80%; Rf = 0.34 (1:1 petroleum
ether/dichloromethane); [␣]D20 = +49.0 (C 1, CH2Cl2); 1H NMR
(300 MHz, CDCl3): ı 7.47–7.18 (m, 18H), 7.08–7.04 (m, 2H), 6.73
(s, 2H), 6.62 (s, 5H), 4.89 (m, 4H), 4.27–4.02 (m, 2H), 4.01–3.94 (m,
12H), 3.68 (pseudo-t, J = 13.2 Hz, 1H), 3.38 (pseudo-t, J = 11.7 Hz,
1H), 2.98–2.96 (m, 1H), 2.84–2.80 (m, 1H), 1.86–1.72 (m, 12H),
1.49–1.28 (m, 84H), 0.89 (t, J = 6.6 Hz, 18H); 13C NMR (75 MHz,
CDCl3):ı 169.4, 159.8, 153.4, 138.7, 138.0, 136.3 (m), 135.5 (m),
133.6 (m), 131.4, 129.5, 129.2 (m), 129.0 (m), 106.2, 103.7, 73.5,
70.7, 69.2, 51.4 (m), 48.6 (m), 39.4 (m), 37.5 (m), 32.0, 30.4, 29.8,
29.7, 29.5, 26.2, 22.8, 14.1; 31P NMR (121 MHz, CDCl3): ı −12.1,
−12.3 (J = 7 Hz); IR (KBr): v (cm−1) 1636.7, 1591.2; MALDI-TOF MS:
m/z 1693.3 (M+); HRMS (ESI) m/z found: 1665.1536, C107H159NO9P2
(M+) requires: 1665.1524.
References
[1] A.D. Schlüter, Top. Curr. Chem. 197 (1998) 165–191.
[2] J.P. Majoral, A.M. Caminade, Chem. Rev. 99 (1999) 845–880.
[3] A.W. Bosman, H.M. Janssen, E.W. Meijer, Chem. Rev. 99 (1999) 1665–1688.
[4] A.D. Schlüter, J.P. Rabe, Angew. Chem., Int. Ed. 39 (2000) 864–883.
[5] H. Frauenrath, Prog. Polym. Sci. 30 (2005) 325–384.
[6] A.D. Schlüter, Top. Curr. Chem. 245 (2005) 151–191.
[7] G.E. Oosterom, J.N.H. Reek, P.C.J. Kamer, P.W.N.M. van Leeuwen, Angew. Chem.,
Int. Ed. 40 (2001) 1828–1849.
[8] D. Astruc, F. Chardac, Chem. Rev. 101 (2001) 2991–3023.
[9] R. van Heerbeek, P.C.J. Kamer, P.W.N.M. van Leeuwen, J.N.H. Reek, Chem. Rev.
102 (2002) 3717–3724.
[10] Q.H. Fan, G.J. Deng, Y. Feng, Y.M. He, Enantioselective catalysis using dendrimer
supports, in: K. Ding, Y. Uozumi (Eds.), Handbook of Asymmetric Heteroge-
neous Catalysis, Wiley-VCH, Weinheim, 2008, pp. 131–180.
[11] Q.H. Fan, Y.M. Chen, X.M. Chen, D.Z. Jiang, F. Xi, A.S.C. Chan, Chem. Commun.
(2000) 789–790.
[12] R. Breinbauer, E.N. Jacobsen, Angew. Chem., Int. Ed. 39 (2000) 3604–3607.
[13] Y. Ribourdouille, G.D. Engel, M. Richard-Plouet, L.H. Gade, Chem. Commun.
(2003) 1228–1229.
Compound 16C-G1:
a procedure similar to that for the
preparation of 10C-G1 was used to prepare 16C-G1 from 3,4,5-
tri(hexadecoxy)benzoic acid and (3R,4R)-pyrphos hydrochloride.
The resulting residue was purified by column chromatography on
silica gel (petroleum ether: ethyl acetate 6:1) to afford 16C-G1
as white grease. Yield 67%; Rf = 0.31 (6:1 petroleum ether/ethyl
acetate); [␣]D20 = +57.0 (C 1, CH2Cl2); 1H NMR (300 MHz, CDCl3):
ı 7.61–7.10 (m, 21H), 6.66 (s, 2H), 4.31–4.18 (m, 1H), 4.14–3.99
(m, 1H), 3.97–3.82 (m, 6H), 3.70 (pseudo-t, J = 13.5 Hz, 1H), 3.43
(pseudo-t, J = 11.7 Hz, 1H), 2.99–2.92 (m, 1H), 2.86–2.84 (m, 1H),
1.85–1.70 (m, 6H), 1.48–1.29 (m, 78H), 0.91 (t, J = 6.0 Hz, 9H); 13C
NMR (75 MHz, CDCl3):ı 169.8, 152.9, 139.3, 136.1 (m), 135.4 (m),
133.6 (m), 131.7, 129.4, 129.2, 128.7 (m), 105.7, 73.4, 69.2, 51.4
(m), 48.6 (m), 39.4 (m), 37.7 (m), 32.0, 30.3, 29.8, 29.7, 29.6, 29.5,
29.4, 26.1, 22.7, 14.2; 31P NMR (121 MHz, CDCl3): ı −11.6, −12.3
(J = 7 Hz); IR (KBr): v (cm−1) 1631.7, 1579.5; MALDI-TOF MS: m/z
1265.0 (M+); HRMS (ESI)m/z found:1264.9284, C83H127NO4P2 (M+)
requires: 1264.9312.
[14] G.J. Deng, Q.H. Fan, X.M. Chen, G.H. Liu, J. Mol. Catal. A: Chem. 193 (2003) 21–25.
[15] Y. Wu, Y. Zhang, M. Yu, G. Zhao, S. Wang, Org. Lett. 8 (2006) 4417–4420.
[16] Z.J. Wang, G.J. Deng, Y. Li, Y.M. He, W.J. Tang, Q.H. Fan, Org. Lett. 9 (2007)
1243–1246.
[17] J.K. Kassube, H. Wadepohl, L.H. Gade, Adv. Synth. Catal. 350 (2008) 1155–1162.
[18] A.V. Gaikwad, V. Boffa, J.E. ten Elshof, G. Rothenberg, Angew. Chem., Int. Ed. 47
(2008) 5407–5410.
[19] F. Zhang, Y. Li, Z.W. Li, Y.M. He, S.F. Zhu, Q.H. Fan, Q.L. Zhou, Chem. Commun.
(2008) 6048–6050.
[20] A.W. Kleij, R.A. Gossage, R.J.M.K. Gebbink, N. Brinkmann, Ed.J. Reijerse, U. Kragl,
M. Lutz, A.L. Spek, G. van Koten, J. Am. Chem. Soc. 122 (2000) 12112–12124.
[21] G.D. Engel, L.H. Gade, Chem. Eur. J. 8 (2002) 4319–4329.
[22] B. Yi, Q.H. Fan, G.J. Deng, Y.M. Li, L.Q. Qiu, A.S.C. Chan, Org. Lett. 6 (2004)
1361–1364.
[23] A.A. El-Shehawy, K. Sugiyama, A. Hirao, Tetrahedron: Asymm. 19 (2008)
425–434.
[24] V. Chechik, R.M. Crooks, J. Am. Chem. Soc. 122 (2000) 1243–1244.
[25] M. Ooe, M. Murata, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 126
(2004) 1604–1605.
[26] Y.Y. Huang, Y.M. He, H.F. Zhou, L. Wu, B.L. Li, Q.H. Fan, J. Org. Chem. 71 (2006)
2874–2877.
[27] J.J. Lee, W.T. Ford, Macromolecules 27 (1994) 4632–4634.
[28] L.Z. Gong, L. Pu, Tetrahedron Lett. 42 (2001) 7337–7340.
[29] H. Hattori, K. Fujita, T. Muraki, A. Sakaba, Tetrahedron Lett. 48 (2007)
6817–6820.
4.2. General procedure for the hydrogenation and catalyst
recycling experiments
[30] G.J. Deng, Q.H. Fan, X.M. Chen, D.S. Liu, A.S.C. Chan, Chem. Commun. (2002)
1570–1571.
[31] Pyrphos was first reported by Nagel and co-workers. See: U. Nagel, E. Kinzel, J.
Andrade, G. Prescher, Chem. Ber. 119 (1986) 3326–3343.
[32] Q.H. Fan, G.J. Deng, C.C. Lin, A.S.C. Chan, Tetrahedron: Asymm. 12 (2001)
1241–1247.
[33] C.J. Hawker, J.M.J. Fréchet, J. Am. Chem. Soc. 112 (1990) 7638–7647.
[34] K.L. Wooley, C.J. Hawker, J.M.J. Fréchet, J. Am. Chem. Soc. 113 (1991) 4252–4261.
[35] R.R. Schrock, J.A. Osborn, J. Am. Chem. Soc. 93 (1971) 3089–3090.
[36] G. Giordano, R.H. Crabtree, R.M. Heintz, D. Forster, D.E. Morris, Inorg. Synth. 19
(1970) 218–220.
In a glovebox under a nitrogen atmosphere, a 45 ml glass-lined
stainless steel reactor with a magnetic stirring bar was charged
with substrate (0.0975 mmol), the calculated amount of catalyst
and methanol–cyclohexane (1:1, v/v, 3 ml). The inert gas in the
autoclave was displaced with hydrogen. The pressure was set at
60 atm and the reaction started by stirring. The temperature was
kept constant at about 20 ◦C with an oil-bath. After carefully vent-
ing hydrogen, 0.06 ml degassed distilled-water was added to the