Organic Process Research & Development 2010, 14, 339–345
Scaleable Preparation of Functionalized Organometallics via Directed Ortho
Metalation Using Mg- and Zn-Amide Bases
Stefan H. Wunderlich, Christoph J. Rohbogner, Andreas Unsinn, and Paul Knochel*
Ludwig-Maximilians-UniVersita¨t Mu¨nchen, Department Chemie und Biochemie, Butenandtstrasse 5-13, Haus F,
81377 Mu¨nchen, Germany
Abstract:
is a drawback for its larger scale application. Compared to earlier
reported neutral Mg-amides,8 the corresponding tmp2Mg ·2LiCl
(2) also reacts in a stoichiometric manner resulting in products
of the type ArMgtmp ·2LiCl. Additionally, the metalation of
more sensitive substrates can be accomplished by using the zinc
base tmp2Zn ·2MgCl2 ·2LiCl (3).9 Both MgCl2 and LiCl are
essential for the high kinetic basicity and good solubility of this
A range of aryl and heteroaryl organometallics are efficiently
prepared in THF Wia directed ortho metalation by using the
previously reported amide bases tmpMgCl ·LiCl (tmp ) 2,2,6,6-
tetramethylpiperidyl), tmp2Mg ·2LiCl and tmp2Zn ·2MgCl2 ·
2LiCl. These metalation reactions are carried out at 80-100
mmol scale. The unsaturated organometallic compounds
undergo smooth reactions with various electrophiles, e.g.
additions to carbonyl groups, Pd-catalyzed cross-coupling
reactions or Cu-catalyzed acylations. In all cases, the
metalation rates have been compared with corresponding
small-scale reactions (1-2 mmol). Moreover, a procedure
for the recovery of the valuable tmp-H from the aqueous
layer is reported.
(3) (a) Naka, H.; Uchiyama, M.; Matsumoto, Y.; Wheatley, A. E. H.;
McPartlin, M.; Morey, J. V.; Kondo, Y. J. Am. Chem. Soc. 2007, 129,
1921. (b) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y.
Angew. Chem., Int. Ed. 2007, 46, 3802. (c) Naka, H.; Morey, J. V.;
Haywood, J.; Eisler, D. J.; McPartlin, M.; Garcia, F.; Kudo, H.; Kondo,
Y.; Uchiyama, M.; Wheatley, A. E. H. J. Am. Chem. Soc. 2008, 130,
16193. (d) Uchiyama, M.; Kobayashi, Y.; Furuyama, T.; Nakamura,
S.; Kajihara, Z.; Miyoshi, T.; Sakamoto, T.; Kondo, Y.; Morokuma,
K. J. Am. Chem. Soc. 2008, 130, 472. (e) Usui, S.; Hashimoto, Y.;
Morey, J. V.; Wheatley, A. E. H.; Uchiyama, M. J. Am. Chem. Soc.
2007, 129, 15102. (f) Chevallier, F.; Mongin, F. Chem. Soc. ReV. 2008,
37, 595. (g) Seggio, A.; Chevallier, F.; Vaultier, M.; Mongin, F. J.
Org. Chem. 2007, 72, 6602. (h) L’Helgoual’ch, J.-M.; Seggio, A.;
Chevallier, F.; Yonehara, M.; Jeanneau, E.; Uchiyama, M.; Mongin,
F. J. Org. Chem. 2008, 73, 177. (i) Carrella, L. M.; Clegg, W.; Graham,
D. V.; Hogg, L. M.; Kennedy, A. R.; Klett, J.; Mulvey, R. E.;
Rentschler, E.; Russo, L. Angew. Chem., Int. Ed. 2007, 46, 4662. (j)
Clegg, W.; Dale, S. H.; Hevia, E.; Hogg, L. M.; Honeyman, G. W.;
Mulvey, R. E.; O’Hara, C. T.; Russo, L. Angew. Chem., Int. Ed. 2008,
47, 731. (k) Blair, V. L.; Carrella, L. M.; Clegg, W.; Conway, B.;
Harrington, R. W.; Hogg, L. M.; Klett, J.; Mulvey, R. E.; Rentschler,
E.; Russo, L. Angew. Chem., Int. Ed. 2008, 47, 6208. (l) Blair, V. L.;
Clegg, W.; Conway, B.; Hevia, E.; Kennedy, A.; Klett, J.; Mulvey,
R. E.; Russo, L. Chem.sEur. J. 2008, 14, 65. (m) Albore´s, P.; Carrella,
Introduction
Over the last few decades, the directed ortho metalation for
the functionalization of unsaturated substrates has become more
and more important.1 The use of lithium reagents for performing
such transformations has been thoroughly investigated, but the
tolerance towards functional groups (especially esters) was
unsatisfactory.2 In addition to this pioneering work of Snieckus
and Beak, several ate-bases for the selective metalation of arenes
and heteroarenes under mild conditions have been reported by
Kondo, Mongin, Mulvey and Uchiyama.3 Recently, we found
that the LiCl-complexed and solubilized amide base tmpMgCl ·
LiCl (1) allows the smooth magnesiation of various activated
aromatics and heteroaromatics.4 The presence of LiCl is
essential since it leads to monomeric metallic amides reacting
in a stoechimometric manner (e.g., no excess of magnesium
amide is required in contrast to previously reported magnesium
bases5). Also, the high kinetic basicity of tmpMgCl ·LiCl results
due to the presence of LiCl.6 This commercially available
reagent can be stored under inert gas atmosphere at 25 °C for
at least 6 months without significant loss of activity. For the
metalation of less activated aromatic substrates, the highly
reactive tmp2Mg ·2LiCl (2) proved to be a powerful metalation
agent.7 The only drawback is the stability of tmp2Mg ·2LiCl
(2) since it is only stable for a maximum of 24 h at 25 °C which
´
L.; Clegg, W.; Garc´ıa-Alvarez, P.; Kennedy, A. R.; Klett, J.; Mulvey,
R. E.; Rentschler, E.; Russo, L. Angew. Chem., Int. Ed. 2009, 48,
3317. (n) Blair, V. L.; Carrella, L. M.; Clegg, W.; Klett, J.; Mulvey,
R. E.; Rentschler, E.; Russo, L. Chem.sEur. J. 2009, 15, 856.
(4) (a) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem., Int.
Ed. 2006, 45, 2958. (b) Lin, W.; Baron, O.; Knochel, P. Org. Lett.
2006, 8, 5673. (c) Boudet, N.; Lachs, J. R.; Knochel, P. Org. Lett.
2007, 9, 5525. (d) Boudet, N.; Dubbaka, S. R.; Knochel, P. Org. Lett.
2008, 10, 1715. (e) Stoll, A. H.; Knochel, P. Org. Lett. 2008, 10, 113.
(f) Mosrin, M.; Knochel, P. Org. Lett. 2008, 10, 2497.
(5) (a) Schlecker, W.; Huth, A.; Ottow, E.; Mulzer, J. J. Org. Chem. 1995,
60, 8414. (b) Schlecker, W.; Huth, A.; Ottow, E.; Mulzer, J. Liebigs
Ann. 1995, 1441. (c) Schlecker, W.; Huth, A.; Ottow, E.; Mulzer, J.
Synthesis 1995, 1225.
(6) Garc´ıa-Alvarez, P.; Graham, D. V.; Hevia, E.; Kennedy, A. R.; Klett,
J.; Mulvey, R. E.; O’Hara, C. T.; Weatherstone, S. Angew. Chem.,
Int. Ed. 2008, 47, 8079.
(7) (a) Clososki, G. C.; Rohbogner, C. J.; Knochel, P. Angew. Chem.,
Int. Ed. 2007, 46, 7681. (b) Rohbogner, C. J.; Clososki, G. C.; Knochel,
P. Angew. Chem., Int. Ed. 2008, 47, 1503. (c) Rohbogner, C. J.;
Wagner, A. J.; Clososki, G. C.; Knochel, P. Org. Synth. 2009, 86,
374.
(8) (a) Eaton, P. E.; Lee, C.-H.; Xiong, Y. J. Am. Chem. Soc. 1989, 111,
8016. (b) Zhang, M.-X.; Eaton, P. E. Angew. Chem., Int. Ed. 2002,
41, 2169. (c) Eaton, P. E.; Lukin, K. A. J. Am. Chem. Soc. 1993, 115,
11375. (d) Kondo, Y.; Yoshida, A.; Sakamoto, T. J. Chem. Soc., Perkin
Trans. 1 1996, 2331.
* Author to whom correspondence may be sent. Fax: (+49) 089 2180 77680.
E-mail: paul.knochel@cup.uni-muenchen.de.
(1) (a) Snieckus, V. Chem. ReV. 1990, 90, 879. (b) Chinchilla, R.; Na´jera,
C.; Yus, M. Chem. ReV. 2004, 104, 2667.
(2) (a) Whisler, M. C.; MacNeil, S.; Beak, P.; Snieckus, V. Angew. Chem.,
Int. Ed. 2004, 43, 2206. (b) Schlosser, M. Angew. Chem., Int. Ed.
2005, 44, 376. (c) Turck, A.; Ple´, N.; Mongin, F.; Que´guiner, G.
Tetrahedron 2001, 57, 4489. (d) Mongin, F.; Que´guiner, G. Tetra-
hedron 2001, 57, 4059.
(9) (a) Wunderlich, S. H.; Knochel, P. Angew. Chem., Int. Ed. 2007, 46,
7685. (b) Wunderlich, S. H.; Knochel, P. Org. Lett. 2008, 10, 4705.
(c) Wunderlich, S. H.; Knochel, P. Chem. Commun. 2008, 47, 6387.
(d) Dong, Z.; Clososki, G. C.; Wunderlich, S. H.; Unsinn, A.; Li, J.;
Knochel, P. Chem.sEur. J. 2009, 15, 457.
10.1021/op9002888 2010 American Chemical Society
Published on Web 02/01/2010
Vol. 14, No. 2, 2010 / Organic Process Research & Development
•
339