C O M M U N I C A T I O N S
D.S.T. is an Alfred P. Sloan Research Fellow. Support from the
NIH (R01 AI068038 to D.S.T., R01 GM065872 to C.D.L., F32
GM075695 to A.D.C.), the NYSTAR Watson Investigator Program
(D.S.T.), the Rita Allen Foundation (C.D.L.), William H. Goodwin
and Alice Goodwin and the Commonwealth Foundation for Cancer
Research, and the MSKCC Experimental Therapeutics Center is
gratefully acknowledged.
Supporting Information Available: Complete ref 7, detailed
procedures, and analytical data for all new compounds. This material
References
(1) (a) Johnson, E. S. Annu. ReV. Biochem. 2004, 73, 355–382. (b) Hershko,
A.; Ciechanover, A. Annu. ReV. Biochem. 1998, 67, 425–479.
(2) The human SUMO-1 isoform, human Sae1 · Uba2, Schizosaccharomyces
pombe ubiquitin, and S. pombe Uba1 were used for all of the experiments
described herein and for simplicity are designated as SUMO, SUMO E1,
Ub, and Ub E1, respectively.
(3) (a) SUMO E1: Lois, L. M.; Lima, C. D. EMBO J. 2005, 24, 439–451. (b)
Nedd8 E1: Walden, H.; Podgorski, M. S.; Huang, D. T.; Miller, D. W.;
Howard, R. J.; Minor, D. L., Jr.; Holton, J. M.; Schulman, B. A. Mol. Cell
2003, 12, 1427–1437. (c) Ubiquitin E1: Lee, I.; Schindelin, H. Cell 2008,
134, 268–278.
(4) Reviews: (a) Capili, A. D.; Lima, C. D. Curr. Opin. Struct. Biol. 2007, 17,
726–735. (b) Dye, B. T.; Schulman, B. A. Annu. ReV. Biophys. Biomol.
Struct. 2007, 36, 131–150.
(5) The sole exception in the E1 family is MoeB, a bacterial biosynthetic
enzyme consisting of only the adenylation domain of the corresponding
eukaryotic enzymes, which has its cognate MoaD-AMP intermediate bound
in its active site: Lake, M. W.; Weubbens, M. M.; Rajagopalan, K. V.;
Schindelin, H. Nature 2001, 414, 325–329.
Figure 3. Inhibition of SUMO E1 (Sae1 ·Uba2) and Ub E1 (Uba1) by
semisynthetic, C-terminally modified SUMO and Ub constructs (SDS-PAGE
data).9 (a, b) SUMO-AMSN (4a) inhibits SUMO E1-S-SUMO thioester
formation, and Ub-AMSN (4b) inhibits Ub E1-S-Ub formation in a dose-
dependent manner. (C) The constructs do not inhibit the noncognate E1s.
(d) SUMO-AVSN (5a) covalently cross-links to SUMO E1 (Uba2 subunit)
but not to Ub E1 (Uba1), and Ub-AVSN (5b) covalently cross-links to Ub
E1 (Uba1) but not to SUMO E1 (Uba2 subunit).
(6) Aminoacyl-tRNA synthetase: (a) Brick, P.; Bhat, T. N.; Blow, D. M. J.
Mol. Biol. 1989, 208, 83–98. Adenylation domains: (b) May, J. J.; Kessler,
N.; Marahiel, M. A.; Stubbs, M. T. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
12120–12125. (c) Du, L.; He, Y.; Luo, Y. Biochemistry 2008, 47, 11473–
11480. Acyl-CoA ligases: (d) Hisanaga, Y.; Ago, H.; Nakagawa, N.;
Hamada, K.; Ida, K.; Yamamoto, M.; Hori, T.; Arii, Y.; Sugahara, M.;
Kuramitsu, S.; Yokoyama, S.; Miyano, M. J. Biol. Chem. 2004, 279, 31717–
31726. (e) Reger, A. S.; Wu, R.; Dunaway-Mariano, D.; Gulick, A. M.
Biochemistry 2008, 47, 8016–8025.
We next investigated the ability of SUMO-AVSN (5a) to cross-
link covalently to the Uba2 subunit of SUMO E1, which contains
the nucleophilic Cys173. As hoped, incubation of SUMO-AVSN
(5a) with SUMO E1 led to the formation of a putative Uba2-S-
SUMO-AVSN thioether adduct with a concomitant decrease in the
level of native Uba2 (Figure 3d). Cross-linking did not compromise
the ability of the Uba2 subunit to complex with the Sae1 subunit
(Figure S4)9 and was not observed when SUMO-AVSN (5a) was
incubated with a mutant SUMO E1 lacking the cysteine nucleophile,
Uba2 C173S (Figure S5).9 Furthermore, the thioether adduct was
stable to thiolysis by dithiothreitol, in contrast to the native Uba2-
S-SUMO thioester product (Figure S6).9 Finally, the preformed
adduct was unable to promote SUMO conjugation to RanGAP
(Figure S7).9 Ub-AVSN (5b) similarly cross-linked Ub E1 (Uba1)
(Figure 3d) but not a mutant lacking the cysteine nucleophile, Uba1
C593A (Figure S8).9 These two inhibitors were again selective for
their cognate E1s and did not cross-link to the corresponding
noncognate E1s (Figure 3d). Taken together, these data demonstrate
that SUMO-AVSN (5a) and Ub-AVSN (5b) form the desired E1-
S-Ub/Ubl-AVSN adducts via stable thioether linkages to the
conserved nucleophilic cysteine, thus halting the Ub/Ubl conjugation
process at the level of the second half-reaction.
In conclusion, we have developed mechanism-based, semisyn-
thetic protein inhibitors of the SUMO E1 and Ub E1 activating
enzymes. In structural and biochemical studies reported elsewhere,13
these inhibitors have provided striking new insights into the
mechanisms of E1-catalyzed adenylation and thioesterification.
Furthermore, these inhibitors are highly selective for their cognate
E1 enzymes, highlighting the utility of designed protein substrate
analogues in achieving inhibitor selectivity,14 and can be used in
the future to dissect the biological functions of E1 enzymes.
(7) An HTS-derived small-molecule inhbitor of the Nedd8 E1 has been reported
recently: Soucy, T. A.; et al. Nature 2009, 458, 732–736.
(8) Review: (a) Cisar, J. S.; Tan, D. S. Chem. Soc. ReV. 2008, 37, 1320–1329.
Aminoacyl-tRNA synthetase: (b) Ueda, H.; Shoku, Y.; Hayashi, N.;
Mitsunaga, J.; In, Y.; Doi, M.; Inoue, M.; Ishida, T. Biochim. Biophys.
Acta 1991, 1080, 126–134. Adenylation domains: (c) Finking, R.; Neu-
mueller, A.; Solsbacher, J.; Konz, D.; Kretzschmar, G.; Schweitzer, M.;
Krumm, T.; Marahiel, M. A. ChemBioChem 2003, 4, 903–906. (d) May,
J. J.; Finking, R.; Wiegeshoff, F.; Weber, T. T.; Bandur, N.; Koert, U.;
Marahiel, M. A. FEBS J. 2005, 272, 2993–3003. (e) Ferreras, J. A.; Ryu,
J.-S.; Di Lello, F.; Tan, D. S.; Quadri, L. E. N. Nat. Chem. Biol. 2005, 1,
29–32. (f) Somu, R. V.; Boshoff, H.; Qiao, C.; Bennett, E. M.; Barry, C. E.,
III; Aldrich, C. C. J. Med. Chem. 2006, 49, 31–34. (g) Miethke, M.; Bisseret,
P.; Beckering, C. L.; Vignard, D.; Eustache, J.; Marahiel, M. A. FEBS J.
2006, 273, 409–419. Luciferase: (h) Nakatsu, T.; Ichiyama, S.; Hiratake,
J.; Saldanha, A.; Kobashi, N.; Sakata, K.; Kato, H. Nature 2006, 440, 372–
376. Acyl-CoA ligases: (i) Lu, X.; Zhang, H.; Tonge, P. J.; Tan, D. S.
Bioorg. Med. Chem. Lett. 2008, 18, 5963–5966. (j) Tian, Y.; Suk, D.-H.;
Cai, F.; Crich, D.; Mesecar, A. D. Biochemistry 2008, 47, 12434–12447.
(k) Arora, P.; Goyal, A.; Natarajan, V. T.; Rajakumara, E.; Verma, P.;
Gupta, R.; Yousuf, M.; Trivedi, O. A.; Mohanty, D.; Tyagi, A.; Sankara-
narayanan, R.; Gokhale, R. S. Nat. Chem. Biol. 2009, 5, 166–173.
(9) See the Supporting Information for full details.
(10) The synthesis of Ubls with a simple C-terminal electrophilic trap has been
reported: Hemelaar, J.; Borodovsky, A.; Kessler, B. M.; Reverter, D.; Cook,
J.; Kolli, N.; Gan-Erdene, T.; Wilkinson, K. D.; Gill, G.; Lima, C. D.;
Ploegh, H. L.; Ovaa, H. Mol. Cell. Biol. 2004, 24, 84–95.
(11) Muir, T. W. Annu. ReV. Biochem. 2003, 72, 249–289.
(12) (a) Reactivity of vinylsulfone derivatives: Reddick, J. J.; Cheng, J.; Roush,
W. R. Org. Lett. 2003, 5, 1967–1970. (b) Cysteine protease inhibitors: Santos,
M. M. M.; Moreira, R. Mini-ReV. Med. Chem. 2007, 7, 1040–1050. (c)
Polyketide synthetase inhibitor: Worthington, A. S.; Rivera, H.; Torpey,
J. W.; Alexander, M. D.; Burkart, M. D. ACS Chem. Biol. 2006, 1, 687–
691. (d) NRPS inhibitor: Qiao, C.; Wilson, D. J.; Bennett, E. M.; Aldrich,
C. C. J. Am. Chem. Soc. 2007, 129, 6350–6351.
(13) Olsen, S. K.; Capili, A. D.; Lu, X.; Tan, D. S.; Lima, C. D. Nature, in
(14) (a) Lau, O. D.; Kundu, T. K.; Soccio, R. E.; Ait-Si-Ali, S.; Khalil, E. M.;
Vassilev, A.; Wolffe, A. P.; Nakatani, Y.; Roeder, R. G.; Cole, P. A. Mol.
Cell 2000, 5, 589–595. (b) Parang, K.; Till, J. H.; Ablooglu, A. J.; Kohanski,
R. A.; Hubbard, S. R.; Cole, P. A. Nat. Struct. Biol. 2001, 8, 37–41. (c)
Culhane, J. C.; Szewczuk, L. M.; Liu, X.; Da, G.; Marmorstein, R.; Cole,
P. A. J. Am. Chem. Soc. 2006, 128, 4536–4537.
Acknowledgment. We thank Dr. George Sukenick, Dr. Hui Liu,
Hui Fang, and Dr. Sylvi Rusli for expert mass spectral analyses.
JA9088549
9
J. AM. CHEM. SOC. VOL. 132, NO. 6, 2010 1749