Deformability of 2′-O-Modified RNA Hetero Duplexes
J. Phys. Chem. B, Vol. 114, No. 7, 2010 2523
the distribution of parameter x throughout the molecular dynamic
simulation.
pairs (omitting terminal 3 base pairs) and averaged same base
pair steps to provide more reliable values.
Acknowledgment. This study was supported in part by a
grant from the Genome Network Project from the Ministry of
Education, Culture, Sports, Science and Technology, Japan, and
by the G-COE project. This study was also supported in part
by a KAKENHI 20350074 from the Ministry of Education,
Culture, Sports, Science, and Technology, Japan, and Research
for Promoting Technological Seeds program of JST.
kBT
σ2
f )
(4)
In complex molecules, such as DNA duplexes, each of the
structural parameters, such as roll, rise, shift, slide, tilt, and twist,
are correlated. Therefore, a covariance-variance matrix (C) of
six parameters (twist, roll, tilt, rise, shift, and slide) was used
instead of the σ2 value.
Supporting Information Available: Detailed RESP charges
and force field parameters of modified moiety, base-pair step
data, rms deviation of each trajectory, and realtionship between
deformability and thermodynamic parameter. This material is
F ) kBTC-1
(5)
where F is the stiffness matrix associated with helical deforma-
tion at the base pair step.
A global view of helical deformability can be obtained by
defining the translational (Ftrans), rotational (Frot), and their
product (Fprod) deformability indexes.25
References and Notes
(1) Soutschek, J.; Akinc, A.; Bramlage, B.; Charisse, K.; Constien, R.;
Donoghue, M.; Elbashir, S.; Geick, A.; Hadwiger, P.; Harborth, J.; John,
M.; Kesavan, V.; Lavine, G.; Pandey, R. K.; Racie, T.; Rajeev, K. G.; Rohl,
I.; Toudjarska, I.; Wang, G.; Wuschko, S.; Bumcrot, D.; Koteliansky, V.;
Limmer, S.; Manoharan, M.; Vornlocher, H. P. Nature 2004, 432, 173–
178.
(2) Prakash, T. P.; Kawasaki, A. M.; Wancewicz, E. V.; Shen, L.;
Monia, B. P.; Ross, B. S.; Bhat, B.; Manoharan, M. J. Med. Chem. 2008,
51, 2766–2776.
(3) Egli, M.; Minasov, G.; Tereshko, V.; Pallan, P. S.; Teplova, M.;
Inamati, G. B.; Lesnik, E. A.; Owens, S. R.; Ross, B. S.; Prakash, T. P.;
Manoharan, M. Biochemistry 2005, 44, 9045–9057.
(4) Honcharenko, D.; Barman, J.; Varghese, O. P.; Chattopadhyaya,
J. Biochemistry 2007, 46, 5635–5646.
(5) Davis, S.; Lollo, B.; Freier, S.; Esau, C. Nucleic Acids Res. 2006,
34, 2294–2304.
Ftrans ) frise shift slide
Frot ) ftwist roll tilt
Fprod ) FtransFrot
f
f
(6)
(7)
(8)
f
f
(6) Kawasaki, A. M.; Casper, M. D.; Freier, S. M.; Lesnik, E. A.;
Zounes, M. C.; Cummins, L. L.; Gonzalez, C.; Cook, P. D. J. Med. Chem.
1993, 36, 831–841.
(7) Saneyoshi, H.; Seio, K.; Sekine, M. J. Org. Chem. 2005, 70, 10453–
10460.
(8) Saneyoshi, H.; Okamoto, I.; Masaki, Y.; Ohkubo, A.; Seio, K.;
Sekine, M. Tetrahedron Lett. 2007, 48, 8554–8557.
(9) Kawai, G.; Yamamoto, Y.; Kamimura, T.; Masegi, T.; Sekine, M.;
Hata, T.; Limori, T.; Watanabe, T.; Miyazawa, T; Yokoyama, S. Biochem-
istry 1992, 31, 1040–1046.
For the analyses of mixed sequences, we tried to parametrize
the deformability of each base-pair step, 5′-N1N2-3′/3′-N3N4-
5′, where N and N represented either 2′-modified or unmodified
nucleotide residues. We defined a new parameter “total stiffness
index (Ftotal)” as the sum of Fprod
.
Ftotal ) ΣFprod
(9)
(10) Cheng, D. M.; Sarma, R. H. Biopolymers 1977, 16, 1687–1711.
(11) Barbe, S.; Bret, M. L. J. Phys. Chem. A 2008, 112, 989–999.
(12) Yathindra, N.; Sundaralingam, M. Biopolymers 1979, 18, 2721–
2731.
(13) Lubini, P.; Zurcher, W.; Egli, M. Chem. Biol. 1994, 1, 39–45.
(14) Bobst, A. M.; Rottman, F.; Cerutti, P. A. J. Mol. Biol. 1969, 46,
221–234.
In this study, the molecular dynamics simulations were
analyzed using Ptraj modules of AMBER 9.0, and X3DNA.41
The elastic constants (f) could be calculated under harmonic
approximation, as described above.22-24
(15) Drake, A. F.; Mason, S. F.; Trim, A. R. J. Mol. Biol. 1974, 86,
727–739.
(16) Singh, H.; Herbut, M. H.; Lee, C. H.; Sarma, R. H. Biopolymers
1976, 15, 2167–2184.
(17) Auffinger, P.; Westhof, E. Angew. Chem., Int. Ed. 2001, 40, 4648–
4650.
(18) Rozners, E.; Moulder, J. Nucleic Acids Res. 2004, 32, 248–254.
(19) Venkateswarlu, D.; Lind, E. K.; Mohan, V.; Manoharan, M.;
Ferguson, D. M. Nucleic Acids Res. 1999, 27, 2189–2195.
(20) Kierzek, E.; Mathews, D. H.; Ciesielska, A.; Turner, D. H.; Kierzek,
R. Nucleic Acids Res. 2006, 34, 3609–3614.
(21) Kool, E. Chem. ReV. 1997, 97, 1473–1488.
(22) Olson, W. K.; Gorin, A. A.; Lu, X. J.; Hock, L. M.; Zhurkin, V. B.
Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 11163–11168.
(23) Lankas, F.; Sponer, J.; Langowski, J.; Cheatham, T. E., III. Biophys.
J. 2003, 85, 2872–2883.
(24) Lankas, F. Biopolymers 2004, 73, 327–339.
(25) Noy, A.; Luque, F. J.; Orozco, M. J. Am. Chem. Soc. 2008, 130,
3486–3496.
(26) Re´blova´, K.; Lankas, F.; Ra´zga, F.; Krasovska, M. V.; Koca, J.;
Sponer, J. Biopolymers 2006, 82, 504–520.
(27) Fujii, S.; Kono, H.; Takenaka, S.; Go, N.; Sarai, A. Nucleic Acids
Res. 2007, 35, 6063–6074.
The elastic constant of sugar puckering was obtained by using
eq 4. The stiffness matrix (F) associated with helical deformation
at the base pair step was determined as the inverse of the
covariance-variance matrix (C) of six parameters (twist, roll,
tilt, rise, shift, and slide), which were extracted by X3DNA.40
The diagonal elements of the stiffness matrix were used as the
elastic constants of the helical parameters.
We used the three 5 ns data extracted from last 15 ns of the
25.3 ns trajectory for the U14/A14 system. Thus, the error bars
shown in Figures 4 and 5 are the standard deviations determined
from 10.3-15.3, 15.3-20.3, and 20.3-25.3 ns data. To obtain
the Fprod of each base-pair step for mixed sequences, we carried
out 20.3 ns MD simulations for Seq1: (UUAA)5UUA/
(UAAU)5UAA, Seq2: (CCGG)5CCG/(CGGC)5CGG, and Seq3:
(ACUG)5ACU/(AGUC)5AGU base sequences. By using the data
for Seq1, we can obtain the deformability parameters of 5′-
UU-3′/3′-AA-5′, 5′-UA-3′/3′-AU-5′, 5′-AA-3′/3′-UU-5′, and 5′-
AU-3′/3′-UA-5′ base pair steps. In addition, by using the Seq2
and Seq3, we can obtain the parameters for all base pair steps.
The data of the last 10 ns were analyzed for these 23mer
sequences. We analyzed the parameters of only the central base
(28) Anselmi, C.; Bocchinfuso, G.; Santis, P. D.; Savino, M.; Scipioni,
A. Biophys. J. 2000, 79, 601–613.
(29) Anselmi, C.; Santis, P. D.; Paparcone, R.; Savino, M.; Scipioni,
A. Biophys. Chem. 2002, 95, 23–47.