Published on Web 02/04/2010
Intramolecular Anodic Olefin Coupling Reactions and the
Synthesis of Cyclic Amines
Hai-Chao Xu and Kevin D. Moeller*
Department of Chemistry, Washington UniVersity, St. Louis, Missouri 63130
Received December 16, 2009; E-mail: moeller@wustl.edu
Abstract: Anodic olefin coupling reactions using a tosylamine trapping group have been studied. The
cyclizations are favored by the use of a less-polar radical cation and more basic reaction conditions. The
most significant factor for obtaining good yields of cyclic product is the use of the more basic reaction
conditions. However, a number of factors including the nature of both the solvent and the electrolyte used
can influence the yield of the cyclizations. The cyclizations allow for the rapid synthesis of both substituted
proline and pipecolic acid type derivatives.
Scheme 1
Introduction
The anodic oxidation of an enol ether, vinyl sulfide, or ketene
acetal generates a radical cation that can be used to trigger a
number of interesting cyclization reactions.1 Typically, the
intermediates are trapped with either an electron-rich olefin, an
aromatic ring, or an alcohol nucleophile in order to generate a
variety of carbocyclic, tetrahydrofuran, and tetrahydropyran
products. In a retrosynthetic analysis, the cyclizations can be
recognized by noting that they involve umpolung reactions
between the normally nucleophilic carbon alpha to a carbonyl
and a second nucleophile.
In principle, anodic cyclization reactions of this type should
also be useful for the synthesis of cyclic amino acid derivatives
and a variety of peptidomimetics (Scheme 1).2-6 In this scenario,
the target amino acid would be dissected between the carbon
alpha to the carboxylic acid and a nitrogen-based nucleophile
to afford an acyclic electrolysis substrate 2.7 The cyclization
would then offer the opportunity to construct the amino acid
derivative with control over the stereochemistry of the R carbon,
even in cases where a tetrasubstituted carbon was needed at
this position.8 The substrates for the electrolyses would be
available in an asymmetric fashion by taking advantage of the
previous route to alcohol-based substrates like 3.8a With this in
(5) For synthetic routes to peptidomimetics containing cyclic amino acid
derivatives: (a) Scott, W. L.; Alsina, J.; Kennedy, J. H.; O’Donnell,
M. J. Org. Lett. 2004, 6, 1629. (b) Palomo, C.; Aizpurua, J. M.; Benito,
A.; Miranda, J. I.; Fratila, R. M.; Matute, C.; Domercq, M.; Gago, F.;
Martin- Santamaria, S.; Linden, A. J. Am. Chem. Soc. 2003, 125,
16243. (c) Colombo, L.; Di Giacomo, M.; Vinci, V.; Colombo, M.;
Manzoni, L.; Scolastico, C. Tetrahedron 2003, 59, 4501. (d) Dolbeare,
K.; Pontoriero, G. F.; Gupta, S. K.; Mishra, R. K.; Johnson, R. L.
J. Med. Chem. 2003, 46, 727. (e) Khalil, E. M.; Pradhan, A.; Ojala,
W. H.; Gleason, W. B.; Mishra, R. K.; Johnson, R. L. J. Med. Chem.
1999, 42, 2977. (f) Aube, J. AdV. Amino Acid Mimetics Peptidomi-
metics 1997, 1, 193. (g) Tong, Y.; Olczak, J.; Zabrocki, J.; Gershen-
gorn, M. C.; Marshall, G. R.; Moeller, K. D. Tetrahedron 2000, 56,
9791. (h) Duan, S.; Moeller, K. D. Tetrahedron 2001, 57, 6407. (i)
Liu, B.; Brandt, J. D.; Moeller, K. D. Tetrahedron 2003, 59, 8515.
(6) For examples of the use of electrochemistry to functionalize cyclic
amino acids, see (a) Beal, L. M.; Liu, B.; Chu, W.; Moeller, K. D.
Tetrahedron 2000, 56, 10113 and references cited therein. (b) Fobian,
Y. M.; d’Avignon, D. A.; Moeller, K. D. Bioorg. Med. Chem. Lett.
1996, 6, 315. (c) Fobian, Y. M.; Moeller, K. D. Peptidomimetic
Protocols; Methods in Molecular Medicine, Vol. 23; Humana Press:
Totowa, NJ, 1999; p 259. (d) Tong, Y.; Fobian, Y. M.; Wu, M.; Boyd,
N. D.; Moeller, K. D. J. Org. Chem. 2000, 65, 2484. (e) Cornille, F.;
Fobian, Y. M.; Slomczynska, U.; Beusen, D. D.; Marshall, G. R.;
Moeller, K. D. Tetrahedron Lett. 1994, 35, 6989. (f) Cornille, F.;
Slomczynska, U.; Smythe, M. L.; Beusen, D. D.; Moeller, K. D.;
Marshall, G. R. J. Am. Chem. Soc. 1995, 117, 909. (g) Slomczynska,
U.; Chalmers, D. K.; Cornille, F.; Smythe, M. L.; Beusen, D. D.;
Moeller, K. D.; Marshall, G. R. J. Org. Chem. 1996, 61, 1198. (h)
Simpson, J. C.; Ho, C.; Shands, E. F. B.; Gershengorn, M. C.; Marshall,
G. R.; Moeller, K. D. Bioorg. Med. Chem. 2002, 10, 291. (i) Li, W.;
Hanau, C. E.; d’Avignon, A.; Moeller, K. D. J. Org. Chem. 1995, 60,
8155.
(1) For a recent account, see (a) Moeller, K. D. Synlett 2009, 1208. For
reviews of early work, see (b) Moeller, K. D. Tetrahedron 2000, 56,
9527. (c) Moeller, K. D. Top. Curr. Chem. 1997, 185, 49.
(2) For a review of cyclic amino acid derivatives, see Park, K.-H.; Kurth,
M. J. Tetrahedron 2002, 58, 8629.
(3) For recent references, see (a) Mitsunaga, S.; Ohbayashi, T.; Sugiyama,
S.; Saitou, T.; Tadokoro, M.; Satoh, T. Tetrahedron: Asymmetry 2009,
20, 1697. (b) Wang, Y.-G.; Mii, H.; Kano, T.; Maruoka, K. Bioorg.
Med. Chem. Lett. 2009, 19, 3795. (c) Kaname, M.; Yamada, M.;
Yoshifuji, S.; Sashida, H. Chem. Pharm. Bull. 2009, 57, 49. (d)
Dickstein, J. S.; Fennie, M. W.; Norman, A. L.; Paulose, B. J.;
Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 15794. (e) Prazeres,
V. F. V.; Castedo, L.; Gonzalez-Bello, C. Eur. J. Org. Chem. 2008,
23, 3991. (f) Simila, S. T. M.; Martin, S. F. Tetrahedron Lett. 2008,
49, 4501. (g) Undheim, K. Amino Acids 2008, 34, 357, and references
therein.
(4) For leading references concerning the use of lactam-based peptido-
mimetics containing cyclic amino acid derivatives, see (a) Cluzeau,
J.; Lubell, W. D. Biopolymers 2005, 80, 98. (b) I-lalab, L.; Gosselin,
F.; Lubell, W. D. Biopolymers 2000, 55, 101. (c) Hanessian, S.;
McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron
1997, 53, 12789. For additional lead references, see (d) Polyak, F.;
Lubell, W. D. J. Org. Chem. 1998, 63, 5937. (e) Curran, T. P.;
Marcaurell, L. A.; O’Sullivan, K. M. Org. Lett. 1999, 1, 1225. (f)
Gosselin, F.; Lubell, W. D. J. Org. Chem. 2000, 65, 2163. (g) Polyak,
F.; Lubell, W. D. J. Org. Chem. 2001, 66, 1171. (h) Feng, Z.; Lubell,
W. D. J. Org. Chem. 2001, 66, 1181.
(7) For a preliminary account of this work, see Xu, H.-C.; Moeller, K. D.
J. Am. Chem. Soc. 2008, 130, 13542.
9
10.1021/ja910586v 2010 American Chemical Society
J. AM. CHEM. SOC. 2010, 132, 2839–2844 2839