E. Brenna, C. Fuganti, P. Grasselli, S. Serra
FULL PAPER
(4S)-(؊)-4-Cyano-4-(3,4-dimethoxyphenyl)-5-methylhexyl Acetate
[(؊)-20]: Derivative (Ϫ)-19 (1.97 g, 6.1 mmol) was treated with hy-
droxylamine chloride (0.64 g, 9.15 mmol) in ethanol (10 mL) in the
presence of sodium acetate (0.75 g, 6.1 mmol). After the usual
workup, the oxime derivative was refluxed in acetic anhydride to
give, after purification on column chromatography eluting with
(2R)-(؉)-5-Chloro-2-(3,4-dimethoxyphenyl)-2-isopropylpentane-
nitrile [(؉)-5]: Alcohol derivative (ϩ)-21 (0.90 g, 3.2 mmol) was
converted into (ϩ)-5 (0.92 g, 96%) according to the same procedure
for the conversion of (Ϫ)-21 into (Ϫ)-5: [α]2D0 ϭ 11.0, (c ϭ 1.22
methanol); ref.[3] [α]2D0 ϭ 11.6, (c ϭ 1 methanol); the 1H NMR was
in accordance with that of the enantiomer.
hexane/ethyl acetate 1:1, nitrile (Ϫ)-15 (1.52 g, 75%). Ϫ [α]2D0
ϭ
Ϫ19.5, (c ϭ 0.75, CH2Cl2). Ϫ 1H NMR: δH ϭ 6.95Ϫ6.85 (m, 3 H,
aromatic hydrogens), 4.00 (t, J ϭ 6.4, 2 H, CH2OAc) 3.90 (s, 3 H,
OMe), 3.89 (s, 3 H, OMe), 2.18 (m, 1 H, CHH CH2CH2OAc), 2.08
[septet, J ϭ 7, 1 H, CH(Me)2], 2.02 (s, 3 H, CH3COO), 1.85 (m, 1
H, CHHCH2CH2OAc), 1.71 (m, 1 H, CH2CHHCH2OAc), 1.41 (m,
1 H, CH2CHHCH2OAc), 1.20 (d, J ϭ 7, 3 H, CH3CH), 0.81 (d,
J ϭ 7, 3 H, CH3CH). Ϫ GC-MS progr. temp. B: tR ϭ 17.71 min,
m/z ϭ 319 [Mϩ], 277, 235, 216, 207, 185. Ϫ C18H25NO4: calcd. C
67.69, H 7.89, N 4.39; found C 67.63, H 7.83, N 4.43.
(S)-(؊)-Verapamil: A mixture of chloro derivative (Ϫ)-5 (1.20 g,
12.6 mmol) and N-methylhomoveratrylamine (5.01 g) was heated
at 130 °C for 1 h. The reaction mixture was treated with a 1
solution of sodium hydroxide and extracted with diethyl ether. The
title compound was recovered by column chromatography, eluting
with dichloromethane/methanol 97:3 (1.77 g, 91%). Ϫ [α]2D0 ϭ Ϫ8.2,
1
(c ϭ 5.08 ethanol); ref.[4]: [α]2D0 ϭ Ϫ8.9, (c ϭ 5.00 ethanol). Ϫ H
NMR: δH ϭ 6.94 (dd, J ϭ 8 and 2, 1 H, aromatic hydrogen), 6.89
(d, J ϭ 2, 1 H, aromatic hydrogen), 6.84 (d, J ϭ 8, 1 H, aromatic
hydrogen), 6.79 (d, J ϭ 8, 1 H, aromatic hydrogen), 6.71 (d, J ϭ
2, 1 H, aromatic hydrogen), 6.68 (dd, J ϭ 8 and 2 1 H, aromatic
hydrogen), 3.90 (s, 3 H, OMe), 3.87 (s, 3 H, OMe), 3.86 (s, 3 H,
OMe), 3.85 (s, 3 H, OMe), 2.68 (m, 2 H), 2.52 (m, 2 H), 2.36 (m,
2 H), 2.18 (s, 3 H, NMe), 2.11 (m, 1 H), 2.07 [septet, J ϭ 7, 1
H,CH(Me)2], 1.83 (m, 1 H), 1.55 (m, 1 H), 1.19 (m ϩ d, J ϭ 7, 4
H), 0.80 (d, J ϭ 7, 3 H, CH3CH)
(4R)-(؉)-4-Cyano-4-(3,4-dimethoxyphenyl)-5-methylhexyl Acetate
[(؉)-20]: Derivative (ϩ)-19 (1.66 g, 5.2 mmol) was converted in de-
rivative (ϩ)-20 (1.19 g, 73%) by the same procedure as for the con-
version of (Ϫ)-19 into (Ϫ)-20. The analytical data were in accord-
ance with those of the corresponding enantiomer: [α]2D0 ϭ 19.1, (c ϭ
0.80, CH2Cl2)
(2S)-(؊)-2-(3,4-Dimethoxyphenyl)-5-hydroxy-2-isopropylpen-
tanenitrile [(؊)-21]: A solution of compound (Ϫ)-20 (1.50 g,
4.7 mmol), and potassium hydroxide 85% (0.47 g, 7.05 mmol) in
methanol (20 mL) was refluxed for 2 h. After the usual workup,
the residue was purified on a silica gel column chromatography,
using hexane/ acetate 3:7 as an eluent, to afford derivative (Ϫ)-21
(R)-(؉)-Verapamil: Chloro derivative (ϩ)-5 (0.92 g, 3.12 mmol) was
converted into the title compound by the same procedure as de-
scribed for (S)-(Ϫ)-verapamil (1.36 g, 92%): the specific rotatory
power was determined on the corresponding HCl salt: [α]2D0
ϭ
ϩ8.3, (c ϭ 5.05 in ethanol); ref.[4]: [α]2D0 ϭ ϩ8.8, (c ϭ 5.00 ethanol).
The 1H NMR spectrum was in accordance with that of the (Ϫ)-en-
antiomer.
(1.19 g, 92%): [α]2D0 ϭ Ϫ 11.5, (c ϭ 2.75 CHCl3); optical purity ϭ
1
91% ee ref.[5]: [α]2D0 ϭ Ϫ12.6, (c ϭ 3.84 CHCl3). Ϫ H NMR: δH
ϭ
6.93 [dd, J ϭ 8 and 2, 1 H, aromatic hydrogen C(6)H], 6.88 [d, J ϭ
2, 1 H, aromatic hydrogen C(2)H], 6.86 [d, J ϭ 8, 1 H, aromatic
hydrogen C(5)H], 3.89 (s, 3 H, OMe), 3.88 (s, 3 H, OMe), 3.60 (m,
2 H, CH2OH), 2.21 (ddd, J ϭ 13, 11 and 4, 1 H, CHH
CH2CH2Oac), 2.09 [septet, J ϭ 7, 1 H, CH(Me)2], 1.93 (ddd, J ϭ
[1]
J. A. Longstreth, ‘‘Verapamil, a chiral challenge to the pharma-
cokinetic and pharmacodynamic assessment of bioavailability
and bioequivalence’’, in ‘‘Drug Stereochemistry: analytical
methods and pharmacology’’, (Ed.: I. W. Wainer), Marcel
Dekker, 1993, New York.
13, 11 and 4,
1 H, CHHCH2CH2OAc), 1.62 (m, 1 H,
CH2CHHCH2OAc), 1.28 (m, 1 H, CH2CHHCH2OAc), 1.19 (d,
J ϭ 7, 3 H, CH3CH), 0.81 (d, J ϭ 7, 3 H, CH3CH). Ϫ GC-MS:
temp. progr. B, tR ϭ 16.61 min, m/z ϭ 277 [Mϩ], 234, 216, 185.
[2]
C. Stinson, Chem. Eng. News 1993, 374.
H. Ramuz, Helv. Chim. Acta 1975, 58, 2050.
H. J. Traiber, M. Raschack, F. Dengel, Ger. Patent 2 059 985,
1972; Ger. Patent 2 059 923, 1972
L. J. Theodore, W. L. Nelson, J. Org. Chem. 1987, 52, 1309.
J. Gilmore, W. Prowse, D. Steggles, M. Urquhart, J. Olkowski,
J. Chem. Soc., Perkin Trans.1 1996, 2845.
E. Brenna, N. Caraccia, G. Fogliato, G. Fronza, C. Fuganti,
Tetrahedron 1997, 53, 10555.
E. Brenna, N. Caraccia, C. Fuganti, D. Fuganti, P. Grasselli,
Tetrahedron: Asymmetry 1997, 8, 3801.
E. Brenna, C. Fuganti, D. Fuganti, P. Grasselli, L. Malpezzi,
G. Pedrocchi-Fantoni, Tetrahedron 1997, 53, 17769.
E. Brenna, C. Fuganti, P. Grasselli, M. Redaelli, S. Serra, J.
Chem. Soc., Perkin. Trans. 1 1998, 4129.
[3]
[4]
(2R)-(؉)-2-(3,4-Dimethoxyphenyl)-5-hydroxy-2-isopropylpen-
tanenitrile [(؉)-21]: Derivative (ϩ)-20 (1.19 g, 3.7 mmol) was con-
verted into derivative (ϩ)-21 (0.92 g, 90%) by the same procedure
as for the conversion of (Ϫ)-20 into (Ϫ)-21: [α]2D0 ϭ 10, (c ϭ 2.90
CHCl3); the analytical data were in accordance with those of the
enantiomer (Ϫ)-21.
[5]
[6]
[7]
[8]
[9]
(2S)-(؊)-5-Chloro-2-(3,4-dimethoxyphenyl)-2-isopropylpenta-
nenitrile [(؊)-5]: A solution of alcohol derivative (Ϫ)-21 (1.19 g,
4.3 mmol) and triphenylphosphane (2.25 g, 8.6 mmol) in carbon
tetrachloride (20 mL) was refluxed for 2 h. The title compound was
recovered from the reaction mixture by column chromatography
[10]
[11]
J. Aleu, E. Brenna, C. Fuganti, S. Serra, J. Chem. Soc., Perkin.
Trans. 1 1999, 271.
E. Brenna, G. Fronza, C. Fuganti, A. Righetti, S. Serra, Helv.
Chim. Acta 1999, 82, 1762.
E. Brenna, G. Fronza, C. Fuganti, L. Malpezzi, A. Righetti, S.
Serra, Helv. Chim. Acta 1999, 82, 2246.
[12]
(1.20 g, 95%): [α]2D0 ϭ Ϫ 11.2, (c ϭ 1.15 methanol); optical purity ϭ
1
91% ee; ref.[3] [α]2D0 ϭ Ϫ12.3, c ϭ 1 methanol. Ϫ H NMR: δH
ϭ
[13]
6.94 [dd, J ϭ 8 and 2, 1 H, aromatic hydrogen C(6)H], 6.88Ϫ6.84
[two overlapping doublets J ϭ 2 and 8, 2 H, aromatic hydrogens
C(2)H and C(5)H], 3.90 (s, 3 H, OMe), 3.88 (s, 3 H, OMe), 3.49
(m, 2 H, CH2Cl), 2.23 (ddd, J ϭ 13, 12 and 4, 1 H, CHH
CH2CH2Cl), 2.15 Ϫ2.00 (m, 2 H, CH(Me)2 ϩ CHHCH2CH2OCl),
1.87 (m, 1 H, CH2CHHCH2Cl), 1.47 (m, 1 H, CH2CHHCH2Cl),
1.20 (d, J ϭ 7, 3 H, CH3CH), 0.82 (d, J ϭ 7, 3 H, CH3CH). Ϫ
GC-MS: temp. progr. B, tR ϭ 16.05 min, m/z ϭ 295 [Mϩ], 252, 189.
[14]
Conversion (c) and enantiomeric ratio (E) were calculated ac-
cording to: C.-S. Chen, Y. Fujimoto, G. Girdaukas, C. H. Sih,
J. Am. Chem. Soc. 1982, 104, 7294.
[15]
R. E. Ireland, R. H. Mueller, J. Am. Chem. Soc. 1972, 94, 5897.
F. E. Ziegler, Chem. Rev. 1988, 88, 1425.
A. Oku, M. Abe, M. Iwamoto, J. Org. Chem. 1994, 59, 7445.
S. Labo, V. J. Hruby, Tetrahedron Lett. 1996, 37, 1563.
[16]
[17]
[18]
1356
Eur. J. Org. Chem. 2001, 1349Ϫ1357