712
S. Kim et al. / Tetrahedron Letters 51 (2010) 709–713
activated catalyst without 30 min prior activation gave slightly
better yield after 2 h (Table 2, entry 1, number in parentheses).
Since the rates of reactions employing the pyridine catalyst 10a
is slightly faster than those of the imidazole-containing catalyst 9,
the scope of substrates in the reactions employing the pyridine cat-
alyst 10a was explored using various substrates under the acid-
activated conditions. The results are summarized in Table 2. To a
1 mol % of pyridine catalyst 10a and 10b, the same amount of
hydrochloric acid (for 10a) or trifluoroacetic acid (for 10b) was
added and the mixture was stirred for 30 min. With the pyridini-
um–TFA salt from 10a, all the di-substituted substrates were cy-
clized smoothly within 2 h at room temperature. When the TFA–
10a salt was employed in an enyne metathesis, only 46% cycliza-
tion was observed in 2 h, but longer reaction time increased the
yield to 80% (Table 2, entry 5).
Meanwhile, reactions involving catalyst 10b showed relatively
low yields compared to 10a. Most of the reactions showed high
conversion at early stage. However, as in the case of TFA-activated
catalyst 10b in Figure 5, the reactions did not proceed further after
2 h and the starting materials remained. We assumed that activa-
tion of the pyridine catalyst 10b with HCl renders the catalyst too
unstable to proceed within the given reaction time. To confirm this
hypothesis, we carried out same series of reactions with non-acti-
vated catalyst 10b and obtained much higher yields of the products
as shown in Table 2.
To see if the pyridine-containing catalyst 10a is stable toward
the acid, it was treated with an equiv of TFA in an nmr tube for
one day and RCM was carried out using this acid-treated catalyst.
As shown in Figure 6, the RCM of N,N-diallyl p-toluenesulfonamide
using this TFA-treated catalyst proceeded at the same rate as the
one using the catalyst treated with TFA for 0.5 h, both of which
are much faster than the reaction using unactivated catalyst 10a.
That the activation of the catalyst 10a was truly due to the acti-
vation of the pyridine ring rather than other parts of the catalyst
was confirmed by the following experiments: RCMs using catalyst
3a were carried out after activation with an acid for 0.5 or 24 h. As
shown in Figure 7, RCMs using 3a activated with HCl for 0.5 h pro-
ceeded slightly faster, but the reaction using 3a activated with TFA
for 0.5 h was somewhat slower than the one using untreated 3a.
When the reactions were carried out using 3a treated with an acid
for a day, they were considerably slower presumably due to the
decomposition of the catalyst by the acids.
Figure 7. Results of RCM using acid-treated Grubbs–Hoveyda catalyst (3a).
the catalyst with an acid was shown to be an efficient way to en-
hance activity of the catalytic system. Compared to classical Hov-
eyda-type catalyst, some of our acid-activated catalysts showed
enhanced activity toward RCM while retaining stability Figure 7.
RCM with acid-treated Grubbs–Hoveyda first catalyst.
Acknowledgment
Generous financial support from the Korea Research Fund
(2006-312-C00229) is gratefully acknowledged.
References and notes
1. (a) Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 5426; (b) Fu, G. C.;
Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 7324; (c) Fu, G. C.; Nguyen, S. T.;
Grubbs, R. H. J. Am. Chem. Soc. 1993, 115, 9856; (d) Fu, G. C.; Grubbs, R. H. J. Am.
Chem. Soc. 1993, 115, 3800.
2. (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed.
1995, 34, 2039; (b) Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am.
Chem. Soc. 1999, 121, 2674; (c) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R.
H. Tetrahedron Lett. 1999, 40, 2247; (d) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R.
H. Org. Lett. 1999, 1, 953; (e) Love, J. A.; Morgan, J. P.; Trnka, T. M.; Grubbs, R. H.
Angew. Chem., Int. Ed. 2002, 41, 4035; (f) Kingsbury, J. S.; Harrity, J. P. A.;
Bonitatebus, P. J.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791; (g) Garber, S.
B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
3. Gessler, S.; Randl, S.; Blechert, S. Tetrahedron Lett. 2000, 41, 9973.
4. Randl, S.; Buschmann, N.; Connon, S. J.; Blechert, S. Synlett 2001, 1547.
5. For a short review on these catalysts, see: Hoveyda, A. H.; Gillingham, D. G.;
Van Veldhuizen, J. J.; Kataoka, O.; Garber, S. B.; Kingsbury, J. S.; Harrity, J. P. A.
Org. Biomol. Chem 2004, 2, 1.
In conclusion, we have modified the Grubbs catalyst by adding a
nitrogen-containing heterocycle onto the ligand and activation of
6. (a) Wakamatsu, H.; Blechert, S. Angew. Chem., Int. Ed. 2002, 41, 2403; (b) Grela,
K.; Harutyunyan, S.; Michrowska, A. Angew. Chem., Int. Ed. 2002, 41, 4038; (c)
Grela, K.; Kim, M. Eur. J. Org. Chem. 2003, 963.
7. (a) Khun, K. M.; Bourg, J.-B.; Chung, C. K.; Virgil, S. C.; Grubbs, R. H. J. Am. Chem.
Soc. 2009, 131, 5313; (b) Vougioukalakis, G. C.; Grubbs, R. H. J. Am. Chem. Soc.
2008, 130, 2234; (c) Chung, C. K.; Grubbs, R. H. Org. Lett. 2008, 10, 2693; (d)
Berlin, J. M.; Campbell, K.; Ritter, T.; Funk, T. W.; Chlenov, A.; Grubbs, R. H. Org.
Lett. 2007, 9, 1339; (e) Vehlow, K.; Maechling, S.; Blechert, S. Organometallics
2006, 25, 25; (f) Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.;
Schrodi, Y. Org. Lett. 2007, 9, 1589; (g) Despagnet-Ayoub, E.; Grubbs, R. H.
Organometallics 2005, 24, 338; (h) Funk, T. W.; Berlin, J. M.; Grubbs, R. H. J. Am.
Chem. Soc. 2006, 128, 1840; (i) Anderson, D. R.; Lavallo, V.; O’Leary, D. J.;
Bertrand, G.; Grubbs, R. H. Angew. Chem., Int. Ed. 2007, 46, 7262.
8. (a) Wakamatsu, H.; Blecher, S. Angew. Chem., Int. Ed. 2002, 41, 794; (b)
Wakamatsu, H.; Blecher, S. Angew. Chem., Int. Ed. 2002, 41, 2403.
9. (a) Connon, S. J.; Rivard, M.; Zaja, M.; Blechert, S. Adv. Synth. Catal. 2003, 345,
572; (b) Michrowska, A.; Bujok, R.; Harutyunyan, S.; Sashuk, V.; Dolgonos, G.;
Grela, K. J. Am. Chem. Soc. 2004, 126, 9318; (c) Bieniek, M.; Bujok, R.; Cabaj, M.;
Lugan, N.; Lavigne, G.; Arlt, D.; Grela, K. J. Am. Chem. Soc. 2006, 128, 13652; (d)
Michrowska, A.; Mennecke, K.; Kunz, U.; Kirschning, A.; Grela, K. J. Am. Chem.
Soc. 2006, 128, 13261; For an overview, see: (e) Grela, K.; Michrowska, A.;
Bieniek, M. Chem. Rec. 2006, 6, 144.
Figure 6. RCM with TFA-activated catalyst 10a.