Organic Letters
Letter
(7) (a) Brewis, S.; Hughes, P. R. The Carbonylation of Dienes with
Palladium Catalysts. Chem. Commun. 1965, 489 (b) Brewis, S.; Hughes,
P. R. The Transannular Addition of Carbon Monoxide to cyclo-octa-
AUTHOR INFORMATION
■
Corresponding Author
ORCID
1,5-Diene. Chem. Commun. 1966, 6, 6. (c) Blanco-Urgoiti, J.; Anorbe,
̃
́
́
L.; Perez-Serrano, L.; Domínguez, G.; Perez-Castells, J. The Pauson−
Khand Reaction, A powerful Synthetic Tool for the Synthesis of
Complex Molecules. Chem. Soc. Rev. 2004, 33, 32. (d) Kitagaki, S.;
Inagaki, F.; Mukai, C. [2 + 2+1] Cyclization of Allenes. Chem. Soc. Rev.
2014, 43, 2956.
Notes
The authors declare no competing financial interest.
(8) Bloome, K. S.; Alexanian, E. J. Palladium-Catalyzed Carbonylative
Heck-Type Reactions of Alkyl Iodides. J. Am. Chem. Soc. 2010, 132,
12823.
ACKNOWLEDGMENTS
■
(9) (a) Hebrard, F.; Kalck, P. Cobalt-Catalyzed Hydroformylation of
Alkenes: Generation and Recycling of the Carbonyl Species, and
Catalytic Cycle. Chem. Rev. 2009, 109, 4272. (b) Wu, X.; Neumann, H.;
Beller, M. Synthesis of Heterocycles via Palladium-Catalyzed Carbon-
ylations. Chem. Rev. 2013, 113, 1. (c) Chiou, W.-H.; Wang, Y.-W.; Kao,
C.-L.; Chen, P.-C.; Wu, C.-C. Rhodium-Catalyzed Hydrocarbonylation
of a Homoallylamine via N−H Activation and Application for Synthesis
of Yohimbane Alkaloids. Organometallics 2014, 33, 4240. (d) Li, H.;
Dong, K.; Neumann, H.; Beller, M. Palladium-Catalyzed Hydro-
amidocarbonylation of Olefins to Imides. Angew. Chem. Int. Ed. 2015,
54, 10239. (e) Xu, T.; Sha, F.; Alper, H. Highly Ligand-Controlled
Regioselective Pd-Catalyzed Aminocarbonylation of Styrenes with
Aminophenols. J. Am. Chem. Soc. 2016, 138, 6629. (f) Liu, J.; Yang, J.;
Ferretti, F.; Jackstell, R.; Beller, M. Pd-Catalyzed Selective Carbon-
ylation of gem-Difluoroalkenes: A Practical Synthesis of Difluorome-
thylated Esters. Angew. Chem., Int. Ed. 2019, 58, 4690.
(10) (a) Zhang, G.; Gao, B.; Huang, H. Palladium-Catalyzed
Hydroaminocarbonylation of Alkenes with Amines: A Strategy to
Overcome the Basicity Barrier Imparted by Aliphatic Amines. Angew.
Chem., Int. Ed. 2015, 54, 7657. (b) Hu, Y.; Shen, Z.; Huang, H.
Palladium-Catalyzed Intramolecular Hydroaminocarbonylation to
Lactams: Additive-Free Protocol Initiated by Palladium Hydride.
ACS Catal. 2016, 6, 6785. (c) Hu, Y.; Huang, H. Highly Selective
Construction of Medium-Sized Lactams by Palladium-Catalyzed
Intramolecular Hydroaminocarbonylation of Aminoalkynes. Org. Lett.
2017, 19, 5070. (d) Gao, B.; Huang, H. Palladium-Catalyzed
Hydroaminocarbonylation of Alkynes with Tertiary Amines via C−N
Bond Cleavage. Org. Lett. 2017, 19, 6260. (e) Zhu, J.; Gao, B.; Huang,
H. Palladium-Catalyzed Highly Regioselective Hydroaminocarbonyla-
tion of Aromatic Alkenes to Branched Amides. Org. Biomol. Chem.
2017, 15, 2910. (f) Gao, B.; Zhang, G.; Zhou, X.; Huang, H. Palladium-
Catalyzed Regiodivergent Hydroaminocarbonylation of Alkenes to
Primary Amides with Ammonium Chloride. Chem. Sci. 2018, 9, 380.
(g) Zhou, X.; Zhang, G.; Gao, B.; Huang, H. Palladium-Catalyzed
Hydrocarbonylative C−N Coupling of Alkenes with Amides. Org. Lett.
2018, 20, 2208.
(11) (a) Seayad, A.; Ahmed, M.; Klein, H.; Jackstell, R.; Gross, T.;
Beller, M. Internal Olefins to Linear Amines. Science 2002, 297, 1676.
(b) Jimenez Rodriguez, C.; Foster, D. F.; Eastham, G. R.; Cole-
Hamilton, D. J. Highly Selective Formation of Linear Esters from
Terminal and Internal Alkenes Catalysed by Palladium Complexes of
bis-(di-tert-butylphosphinomethyl)benzene. Chem. Commun. 2004, 15,
1720. (c) Roesle, P.; Caporaso, L.; Schnitte, M.; Goldbach, V.; Cavallo,
L.; Mecking, S. A Comprehensive Mechanistic Picture of the
Isomerizing Alkoxycarbonylation of Plant Oils. J. Am. Chem. Soc.
2014, 136, 16871. (d) Busch, H.; Stempfle, F.; Hess, S.; Grau, E.;
Mecking, S. Selective Isomerization−Carbonylation of A Terpene
Trisubstituted Double Bond. Green Chem. 2014, 16, 4541. (e) Li, H.;
Dong, K.; Jiao, H.; Neumann, H.; Jackstell, R.; Beller, M. The Scope and
Mechanism of Palladium-Catalysed Markovnikov Alkoxycarbonylation
of Alkenes. Nat. Chem. 2016, 8, 1159. (f) Sang, R.; Kucmierczyk, P.;
Dong, K. W.; Franke, R.; Neumann, H.; Jackstell, R.; Beller, M.
Palladium-Catalyzed Selective Generation of CO from Formic Acid for
Carbonylation of Alkenes. J. Am. Chem. Soc. 2018, 140, 5217.
This research was supported by the National Natural Science
Foundation of China (Nos. 21790333, 21702197, and
21672199) and the Fundamental Research Funds for the
Central Universities (No. WK2060190086).
REFERENCES
■
(1) (a) Wang, J.; Zhao, L.; Wang, R.; Lu, M.; Chen, D.; Jing, Y.
Synthesis and Anticancer Activity of 2-alkylaminomethyl-5-diaryl-
methylenecyclopentanone Hydrochlorides and Related Compounds.
Bioorg. Med. Chem. 2005, 13, 1285. (b) Heng, R.; Zard, S. Z. A Flexible
Route to Substituted Hydroxy-Cyclopentanones from Cyclobutanones.
Tetrahedron Lett. 2015, 56, 3679. (c) Costanzo, P.; Cariati, L.;
Desiderio, D.; Sgammato, R.; Lamberti, A.; Arcone, R.; Salerno, R.;
Nardi, M.; Masullo, M.; Oliverio, M. Design, Synthesis, and Evaluation
of Donepezil-Like Compounds as AChE and BACE-1 Inhibitors. ACS
Med. Chem. Lett. 2016, 7, 470. (d) Simeonov, S. P.; Nunes, J. P. M.;
Guerra, K.; Kurteva, V. B.; Afonso, C. A. M. Synthesis of Chiral
Cyclopentenones. Chem. Rev. 2016, 116, 5744.
(2) (a) Liebeskind, L. S.; Chidambaram, R.; Mitchell, D.; Foster, B. S.
Metal Mediated Routes to 5-membered Rings. Pure Appl. Chem. 1988,
60, 27. (b) Sun, H. D.; Huang, S. X.; Han, Q. B. Diterpenoids from
Isodon Species and Their Biological Activities. Nat. Prod. Rep. 2006, 23,
673.
(3) (a) Gibson, S. E.; Lewis, S. E.; Mainolfi, N. Transition Metal-
Mediated Routes to Cyclopentenones. J. Organomet. Chem. 2004, 689,
3873. (b) Deng, R.; Tang, J.; Xia, L.-P.; Li, D.-D.; Zhou, W.-J.; Wang,
L.-L.; Feng, G.-K.; Zeng, Y.-X.; Gao, Y.-H.; Zhu, X.-F. Excisanin A, a
Diterpenoid Compound Purified from Isodon Macrocalyxin D, Induces
Tumor Cells Apoptosis and Suppresses Tumor Growth Through
Inhibition of PKB/AKT Kinase Activity and Blockade of its Signal
Pathway. Mol. Cancer Ther. 2009, 8, 873. (c) Li, C.; Dian, L.; Zhang, W.;
Lei, X. Biomimetic Syntheses of (−)-Gochnatiolides A−C and
(−)-Ainsliadimer B. J. Am. Chem. Soc. 2012, 134, 12414.
(4) (a) Larock, R. C.; Reddy, C. K. Synthesis of 2-Alkylidenecyclo-
pentanones via Palladium-Catalyzed Cross-Coupling of 1-(1-Alkynyl)-
Cyclobutanols and Aryl or Vinylic Halides. Org. Lett. 2000, 2, 3325.
(b) Larock, R. C.; Reddy, C. K. Synthesis of 2-Alkylidenecyclopenta-
nones via Palladium-Catalyzed Carbopalladation/Ring Expansion of 1-
(1-Alkynyl)cyclobutanols. J. Org. Chem. 2002, 67, 2027. (c) Markham,
J. P.; Staben, S. T.; Toste, F. D. Gold(I)-Catalyzed Ring Expansion of
Cyclopropanols and Cyclobutanols. J. Am. Chem. Soc. 2005, 127, 9708.
(d) Leemans, E.; D’hooghe, M.; De Kimpe, N. Ring Expansion of
Cyclobutylmethylcarbenium Ions to Cyclopentane or Cyclopentene
Derivatives and Metal-Promoted Analogous Rearrangements. Chem.
Rev. 2011, 111, 3268. (e) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N.
Cyclobutanes in Catalysis. Angew. Chem., Int. Ed. 2011, 50, 7740.
(5) (a) Sato, Y.; Oonishi, Y.; Mori, M. A New Method for the
Synthesis of Cycloheptenones by RhI-Catalyzed Intramolecular
Hydroacylation of 4,6-Dienals. Angew. Chem., Int. Ed. 2002, 41, 1218.
(b) Takeishi, K.; Sugishima, K.; Sasaki, K.; Tanaka, K. Rhodium-
Catalyzed Intramolecular Hydroacylation of 5- and 6-alkynals:
Convenient Synthesis of α-Alkylidenecycloalkanones and Cyclo-
alkenones. Chem. - Eur. J. 2004, 10, 5681.
(6) Thottumkara, A. P.; Kurokawa, T.; Du Bois, J. Carbocyclization of
Unsaturated Thioesters under Palladium Catalysis. Chem. Sci. 2013, 4,
2686.
D
Org. Lett. XXXX, XXX, XXX−XXX