Organic Letters
Letter
(4) (a) Kilcoyne, M.; Joshi, L. Carbohydrates in therapeutics.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
Cardiovasc. Hematol. Agents Med. Chem. 2007, 5, 186−197. (b) Kren,
S
́
V.; Martínkova, L. Glycosides in medicine: ″The role of glycosidic
residue in biological activity. Curr. Med. Chem. 2001, 8, 1303−1328.
(c) Wrodnigg, T. M.; Sprenger, F. K. Bioactive carbohydrates and
recently discovered analogues as chemotherapeutics. Mini-Rev. Med.
Chem. 2004, 4, 437−459. (d) Kren, V.; Rezanka, T. Sweet antibiotics
- the role of glycosidic residues in antibiotic and antitumor activity
and their randomization. FEMS Microbiol. Rev. 2008, 32, 858−889.
(5) (a) Campbell, J. A.; Davies, G. J.; Bulone, V.; Henrissat, B. A
classification of nucleotide-diphospho-sugar glycosyltransferases based
on amino acid sequence similarities. Biochem. J. 1997, 326, 929−939.
(b) Coutinho, P. M.; Deleury, E.; Davies, G. J.; Henrissat, B. An
evolving hierarchical family classification for glycosyltransferases. J.
Mol. Biol. 2003, 328, 307−317.
Experimental procedures, HPLC-HRESIMS character-
ization data, NMR spectra of glucosylated products
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(6) Zhang, H.; Yohe, T.; Huang, L.; Entwistle, S.; Wu, P.; Yang, Z.;
Busk, P. K.; Xu, Y.; Yin, Y. dbCAN2: a meta server for automated
carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018, 46
(W1), W95−W101.
Author Contributions
(7) Veith, B.; Herzberg, C.; Steckel, S.; Feesche, J.; Maurer, K. H.;
R.P.P., P.B., and P.P. performed experiments, analyzed data.
R.P.P. wrote the manuscript. T.Y. helped in analyzing NMR
data. J.K.S. supervised the work. All authors have given
approval to the final version of the manuscript.
̈
Ehrenreich, P.; Baumer, S.; Henne, A.; Liesegang, H.; Merkl, R.;
Ehrenreich, A.; Gottschalk, G. The complete genome sequence of
Bacillus licheniformis DSM13, an organism with great industrial
potential. J. Mol. Microbiol. Biotechnol. 2004, 7, 204−211.
Notes
(8) Kersten, R. D.; Ziemert, N.; Gonzalez, D. J.; Duggan, B. M.;
Nizet, V.; Dorrestein, P. C.; Moore, B. S. Glycogenomics as a mass
spectrometry-guided genome-mining method for microbial glycosy-
lated molecules. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E4407−
4416.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a grant from the Next-Generation
BioGreen 21 Program (SSAC, Grant No. PJ013137), Rural
Development Administration, Republic of Korea.
(9) Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.
Y.; Medema, M. H.; Weber, T. antiSMASH 5.0: updates to the
secondary metabolite genome mining pipeline. Nucleic Acids Res.
2019, 47, W81−W87.
(10) (a) Wu, C. Z.; Jang, J. H.; Woo, M.; Ahn, W. J.; Kim, J. S.;
Hong, Y. S. Enzymatic glycosylation of nonbenzoquinone geldana-
mycin analogs via Bacillus UDP-glycosyltransferase. Appl. Environ.
Microbiol. 2012, 78, 7680−7686. (b) Pandey, R. P.; Gurung, R. B.;
Parajuli, P.; Koirala, N.; Tuoi, L. T.; Sohng, J. K. Assessing acceptor
substrate promiscuity of YjiC-mediated glycosylation toward
flavonoids. Carbohydr. Res. 2014, 393, 26−31. (c) Parajuli, P.;
Pandey, R. P.; Koirala, N.; Yoon, Y. J.; Kim, B. G.; Sohng, J. K.
Enzymatic synthesis of epothilone A glycosides. AMB Express 2014, 4,
31. (d) Pandey, R. P.; Parajuli, P.; Shin, J. Y.; Lee, J.; Lee, S.; Hong, Y.
S.; Park, Y. I.; Kim, J. S.; Sohng, J. K. Enzymatic biosynthesis of novel
resveratrol glucoside and glycoside derivatives. Appl. Environ.
Microbiol. 2014, 80, 7235−7243. (e) Pandey, R. P.; Chu, L. L.;
Kim, T. S.; Sohng, J. K. Bioconversion of tetracycline antibiotics to
novel glucoside derivatives by single-vessel multienzymatic glyco-
sylation. J. Microbiol. Biotechnol. 2018, 28, 298−304. (f) Choi, H. Y.;
Van Minh, N.; Choi, J. M.; Hwang, J. Y.; Seo, S. T.; Lee, S. K.; Kim,
W. G. Enzymatic synthesis of avermectin B1a glycosides for the
effective prevention of the pine wood nematode Bursaphelenchus
xylophilus. Appl. Microbiol. Biotechnol. 2018, 102, 2155−2165.
(11) (a) Latchinian-Sadek, L.; Ibrahim, R. K. Partial purification and
some properties of a ring B-O-glucosyltransferase from onion bulbs.
Phytochemistry 1991, 30, 1767−1771. (b) Ishikura, N.; Mato, M.
Partial Purification and Some Properties of Flavonol 3-O-Glucosyl-
transferases from Seedlings of Vigna mungo, with Special Reference to
the Formation of Kaempferol 3-O-Galactoside and Kaempferol 3-O-
Glucoside. Plant Cell Physiol. 1993, 34, 329−335. (c) Isayenkova, J.;
Wray, V.; Nimtz, M.; Strack, D.; Vogt, T. Cloning and functional
characterization of two regioselective flavonoid glucosyltransferases
from Beta vulgaris. Phytochemistry 2006, 67, 1598−1612.
REFERENCES
■
(1) (a) Fu, X.; Albermann, C.; Jiang, J. Q.; Liao, J. C.; Zhang, C. S.;
Thorson, J. S. Antibiotic optimization via in vitro glycorandomization.
Nat. Biotechnol. 2003, 21, 1467−1469. (b) Thibodeaux, C. J.;
Melanco̧ n, C. E., III; Liu, H. W. Natural-product sugar biosynthesis
and enzymatic glycodiversification. Angew. Chem., Int. Ed. 2008, 47,
9814−9859. (c) Williams, G. J.; Yang, J.; Zhang, C.; Thorson, J. S.
Recombinant E. coli prototype strains for in vivo glycorandomization.
ACS Chem. Biol. 2011, 6, 95−100. (d) Xiao, J.; Muzashvili, T. S.;
Georgiev, M. I. Advances in the biotechnological glycosylation of
valuable flavonoids. Biotechnol. Adv. 2014, 32, 1145−1156. (e) Pan-
dey, R. P. Diversifying natural products with promiscuous
glycosyltransferase enzymes via a sustainable microbial fermentation
approach. Front. Chem. 2017, 5, 110. (f) Nidetzky, B.; Gutmann, A.;
Zhong, C. Leloir glycosyltransferases as biocatalysts for chemical
production. ACS Catal. 2018, 8 (7), 6283−6300. (g) Williams, G. J.;
Gantt, R. W.; Thorson, J. S. The impact of enzyme engineering upon
natural product glycodiversification. Curr. Opin. Chem. Biol. 2008, 12,
556−564.
(2) (a) Gantt, R. W.; Peltier-Pain, P.; Singh, S.; Zhou, M.; Thorson,
J. S. Broadening the scope of glycosyltransferase-catalyzed sugar
nucleotide synthesis. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 7648−
7653. (b) Liang, C.; Zhang, Y.; Jia, Y.; Wang, W.; Li, Y.; Lu, S.; Jin, J.
M.; Tang, S. Y. Engineering a Carbohydrate-processing trans-
glycosidase into glycosyltransferase for natural product glycodiversi-
fication. Sci. Rep. 2016, 6, 21051. (c) Hughes, R. R.; Shaaban, K. A.;
Zhang, J.; Cao, H.; Phillips, G. N., Jr.; Thorson, J. S. OleD Loki as a
catalyst for tertiary amine and hydroxamate glycosylation. Chem-
BioChem 2017, 18, 363−367.
(3) (a) Weymouth-Wilson, A. C. The role of carbohydrates in
biologically active natural products. Nat. Prod. Rep. 1997, 14, 99−110.
(b) Butler, M. S. The role of natural product chemistry in drug
discovery. J. Nat. Prod. 2004, 67, 2141−2153. (c) Elshahawi, S. I.;
Shaaban, K. A.; Kharel, M. K.; Thorson, J. S. A comprehensive review
of glycosylated bacterial natural products. Chem. Soc. Rev. 2015, 44,
7591−7697.
(12) (a) Xie, K.; Chen, R.; Li, J.; Wang, R.; Chen, D.; Dou, X.; Dai,
J. Exploring the catalytic promiscuity of a new glycosyltransferase
from Carthamus tinctorius. Org. Lett. 2014, 16, 4874−4877. (b) Chen,
D.; Chen, R.; Wang, R.; Li, J.; Xie, K.; Bian, C.; Sun, L.; Zhang, X.;
Liu, J.; Yang, L.; Ye, F.; Yu, X.; Dai, J. Probing the catalytic
promiscuity of a regio- and stereospecific c-glycosyltransferase from
F
Org. Lett. XXXX, XXX, XXX−XXX