Z.-X. Jiang, F.-L. Qing / Tetrahedron Letters 42 (2001) 9051–9053
9053
Scheme 3.
3. (a) Knight, D. W. Contemp. Org. Synth. 1994, 1, 287; (b)
Corey, E. J.; Cheng, X. M. The Logic of Chemical Synthe-
sis; John Wiley & Sons: New York, 1989; (c) Nagao, Y.;
Dai, W.; Ochiai, M. J. Org. Chem. 1989, 54, 5211; (d)
Rao, Y. S. Chem. Rev. 1976, 76, 5; (e) Handa, S. Tetra-
hedron: Asymmetry 1996, 7, 1281; (f) Rodriguez, A. D.;
Shi, J. G.; Huang, S. D. J. Org. Chem. 1998, 63, 4425.
4. Qing, F. L.; Jiang, Z. X. Tetrahedron Lett. 2001, 42, 5933.
5. (a) El Ali, B.; Alper, H. Synlett 2000, 161; (b) Van Den
Hoven, B. G.; El Ali, B.; Alper, H. J. Org. Chem 2000, 65,
4131; (c) Yu, W. Y.; Alper, H. J. Org. Chem. 1997, 62,
6584; (d) Gabriele, B.; Costa, M.; Salerno, G.; Chiusoli, G.
P. J. Chem. Soc., Chem. Commun. 1994, 1429; (e) Yoshio,
I.; Kunihiro, O.; Yen, I. F.; Shin, I. Bull. Chem. Soc. Jpn.
1989, 62, 3518.
Under the optimized conditions established for 1a, the
cyclocarbonylation of various trifluoromethyl propar-
gylic alcohols 1 has been investigated. Tertiary alkynols
can be converted to the corresponding 3-trifluoro-
methyl-2(5H)-furanone (Table 2). In contrast, when
secondary phenyl substituted alkynol 1g was treated
with CO/H2 in the presence of Pd(OAc)2/PPh3 under
the typical cyclocarbonylation conditions, the product
was ketone 3 which was isolated in 14% yield (Scheme
3). Interestingly, the cyclocarbonylation of secondary
alkyl substituted alkynol 1h led to the hydrogenated
product 4 as a single product in 85% yield (Scheme 3).
In conclusion, we have developed a convenient route to
3-trifluoromethyl-2(5H)-furanone through palladium-
catalyzed cyclocarbonylation of 3-trifluoromethyl
alkynols.
6. (a) Yamazaki, T.; Mizutani, K.; Kitazume, T. J. Org.
Chem. 1995, 60, 6046; (b) Katritzky, A. R.; Qi, M.; Wells,
A. P. J. Fluorine Chem. 1996, 80, 145.
7. Gabriele, B.; Salerno, G.; De Pascali, F.; Coata, M.;
Chiusoli, G. P. J. Chem. Soc., Perkin Trans. 1 1997, 147.
8. Typical cyclocarbonylation procedure: Into an autoclave
with a glass liner and stirring bar was placed a mixture of
1a (192 mg, 1 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), PPh3
(26 mg, 0.1 mmol) and CH2Cl2 (3 ml). The autoclave was
flushed four times with hydrogen, pressurized to 20 atm,
and then carbon monoxide and pressurized to 80 atm. The
autoclave was placed in an oil bath at 85°C for 30 h and
then allowed to cool to room temperature. The autoclave
was depressurized, the reaction mixture filtered through
Celite and the solvent removed by rotary evaporation. The
resulting residue was purified by flash silica gel chromato-
graphy to afford 2a (198 mg, 90% yield). 1H NMR (CDCl3,
300 MHz): l 7.84 (s, 1H), 1.75 (m, 10H); 19F NMR
(CDCl3, 282 MHz, CF3CO2H as an external standard,
upfield positive): l −12.3 (s); IR: 1756, 1668, 1362, 1175
cm−1; MS m/z 220 (M+, 17), 122 (100); HRMS for
C10H11O2F3: 220.07479. Found: 220.07295.
References
1. (a) Biomedical Frontiers of Fluorine Chemistry; Ojima, I.;
McCarthyl, J. R.; Welch, J. T., Eds.; ACS Symposium
Series 639; American Chemical Society: Washington, DC,
1996; (b) Welch, J. T. Tetrahedron 1987, 43, 3123; (c)
Synthesis and Chemistry of Agrochemicals III; Baker, D.
R.; Fenyes, J. G.; Steffens, J. J., Eds.; ACS Symposium
Series 504; American Chemical Society: Washington, DC,
1992.
2. (a) Asymmetric Fluoroorganic Chemistry; Ramachadran,
P. V. Ed.; ACS Symposium Series 746; American Chemi-
cal Society: Washington, DC, 1999; (b) Kitazume, T.;
Yamazaki, T. Experimental Methods in Organic Fluorine
Chemistry; Gordon and Breach Science: Amsterdam, 1998;
(c) Burton, D. J.; Yang, Z. Y.; Qiu, W. Chem. Rev. 1996,
96, 1641.