3 (a) A. Kato, I. Adachi, M. Miyauchi, K. Ikeda, T. Komae,
H. Kizu, Y. Kameda, A. A. Watson, R. J. Nash,
M. R. Wormald, G. W. J. Fleet and N. Asano, Carbohydr. Res.,
1999, 316, 95; (b) N. Asano, H. Kuroi, K. Ikeda, H. Kizu,
Y. Kameda, A. Kato, I. Adachi, A. A. Watson, R. J. Nash and
G. W. J. Fleet, Tetrahedron: Asymmetry, 2000, 11, 18;
(c) T. Yamashita, K. Yasuda, H. Kizu, Y. Kameda,
A. A. Watson, R. J. Nash, G. W. J. Fleet and N. Asano, J. Nat.
Prod., 2002, 65, 1875; (d) A. Kato, N. Kato, I. Adachi,
J. Hollinshead, G. W. J. Fleet, C. Kuriyama, K. Ikeda,
N. Asano and R. J. Nash, J. Nat. Prod., 2007, 70, 993;
(e) N. Asano, K. Ikeda, M. Kasahara, Y. Arai and H. Kizu,
J. Nat. Prod., 2004, 67, 846.
4 T. J. Donohoe, R. E. Thomas, M. D. Cheeseman, C. L. Rigby,
G. Bhalay and I. D. Linney, Org. Lett., 2008, 10, 3615.
Fig. 2 HF/6-31G* optimized structure (SPARTAN) of compound 3.
5 (a) L. Ramabaud, P. Compain and O. R. Martin, Tetrahedron:
Asymmetry, 2001, 12, 1807; (b) I. Izquierdo, M. T. Plaza, R. Robles
and F. Franco, Tetrahedron: Asymmetry, 2002, 13, 1581;
(c) F. Cardona, E. Faggi, F. Liguori, M. Cacciarini and A. Goti,
Tetrahedron Lett., 2003, 44, 2315; (d) I. Izquierdo, M. T. Plaza and
F. Franco, Tetrahedron: Asymmetry, 2003, 14, 3933;
Blue and red double headed arrows show NOESY correlations.
40% since a significant amount of another diastereomer of 9b
(ca. 20% of the crude reaction mixture from 1H NMR
analysis) was also formed. This diastereomer could not be
characterized since it could not be isolated in pure form. We
suspect that this diastereomer arises in the conversion of 6b to
7b due to an unmatched situation between the chiral reagent
and the chiral substrate. More significantly, the 1H and 13C
NMR spectral data of synthetic 3 did not match with that
reported for hyacinthacine B7 (see ESIw).3d NOESY NMR
analysis of our synthetic compound clearly indicated that it
had the correct relative configuration shown in structure 3
(Fig. 2). Significantly, a NOESY correlation was observed
between H-5 and H-7 in 3 (Fig. 2, red arrow) but this was not
reported for hyacinthacine B7 in the original isolation paper.
The hyacinthacines are well resolved by GC-MS as their
tetra-TMS derivatives.3b The original natural hyacinthacine B7
was no longer available for comparison with the synthetic
product reported here but GC-MS analysis of the extract of
the same S. socialis plants used for the first report showed no
hyacinthacine corresponding to the retention time of 10.71 min
of 3. The tetra-TMS derivative of 3 gave a distinctive mass
spectrum with a base ion at 388 amu (100%). Four hyacinthacines
in the S. socialis extract showed the same fragmentation
pattern suggesting they were epimers of 3. One major
hyacinthacine with the 388 amu base ion had a retention time
of 11.31 min by GC-MS which was the same retention time as
a standard of hyacinthacine B5. Another epimer was also
observed at 10.97 min. It is not possible to conclusively
identify the original natural product without an authentic
standard but analysis of the original plant material strongly
suggests that 3 does not occur in that plant although epimers
of 3 clearly do. We thus conclude that the proposed structure
of hyacinthacine B7 is incorrect. Work is now continuing to
ascertain the correct structure.
(e) S. Desvergnes, S. Py and Y. Valee, J. Org. Chem., 2005, 70,
´
1459; (f) L. Chabaud, Y. Landais and P. Renaud, Org. Lett., 2005,
7, 2587; (g) I. Izquierdo, M. T. Plaza, J. A. Tamayo and
F. Sanchaz-Cantalejo, Eur. J. Org. Chem., 2007, 6078;
(h) I. Izquierdo, M. T. Plaza, J. A. Tamayo, V. Yanez, D. L. Re
and F. Sanchaz-Cantalejo, Tetrahedron, 2008, 64, 4613;
(i) P. Dewi-Wulfing and S. Blechert, Eur. J. Org. Chem., 2006,
¨
1852; (j) T. Sengoku, Y. Satoh, M. Oshima, M. Takahashi and
H. Yoda, Tetrahedron, 2008, 64, 8052; (k) T. Sengoku, Y. Satoh,
M. Takahashi and H. Yoda, Tetrahedron Lett., 2009, 50, 4937;
(l) C. Ribes, E. Falomir, M. Carda and J. A. Marco, Tetrahedron,
2009, 65, 6965; (m) S. Chandrasekhar, B. B. Parida and
C. Rambabu, J. Org. Chem., 2008, 73, 7826.
6 (a) P. V. Reddy, A. Veyron, P. Koos, A. Bayle, A. E. Greene and
P. Delair, Org. Biomol. Chem., 2008, 6, 1170; (b) P. V. Reddy,
P. Koos, A. Veyron, A. E. Greene and P. Delair, Synlett, 2009,
1141.
7 J. Calveras, J. Casas, T. Parella, J. Joglar and P. Clape
Synth. Catal., 2007, 349, 1661.
´
s, Adv.
8 (a) I. Izquierdo, M. T. Plaza, R. Robles and F. Franco,
Tetrahedron: Asymmetry, 2001, 12, 2481; (b) I. Izquierdo,
M. T. Plaza and F. Franco, Tetrahedron: Asymmetry, 2004, 15,
1465; (c) I. Izquierdo, M. T. Plaza, J. A. Tamayo, M. Rodriguez
and A. Martos, Tetrahedron, 2006, 62, 6006; (d) L. Zhou, J. Chen
and X.-P. Cao, Synthesis, 2007, 1359; (e) I. Izquierdo, M. T. Plaza,
J. A. Tamayo and F. Sanchaz-Cantalejo, Tetrahedron: Asymmetry,
2007, 18, 2211; (f) K. P. Kaliappan and P. Das, Synlett, 2008,
841.
9 T. J. Donohoe, H. O. Sintim and J. Hollinshead, J. Org. Chem.,
2005, 70, 7297.
10 K. Gela and M. Bieniek, Tetrahedron Lett., 2001, 42, 6425.
11 (a) P. Evans and M. Leffray, Tetrahedron, 2003, 59, 7973; (b) No
aldehyde signal could be observed in the 1H NMR spectrum of the
crude product.
12 B. M. Trost, R. C. Bunt, R. C. Lemoine and T. L. Calkins, J. Am.
Chem. Soc., 2000, 122, 5968.
13 (a) N. A. Petasis and I. A. Zavialov, J. Am. Chem. Soc., 1998, 120,
11798; (b) A. S. Davis, S. G. Pyne, B. W. Skelton and A. H. White,
J. Org. Chem., 2004, 69, 3139; (c) C. W. G. Au and S. G. Pyne,
J. Org. Chem., 2006, 71, 7097.
14 M. Tang and S. G. Pyne, J. Org. Chem., 2003, 68, 7818.
15 (a) A. S. Davis, N. J. Gates, K. B. Lindsay, M. Tang and
S. G. Pyne, Synlett, 2004, 49; (b) A. J. Murray, P. J. Parsons,
E. S. Greenwood and E. M. E. Viseux, Synlett, 2004,
1589; (c) A. J. Murray, P. J. Parsons and P. B. Hitchcock,
Tetrahedron, 2007, 63, 6485; (d) Our calculations of the HOMO
of 11 (HF/6-31G*, SPARTAN) were consistent with those of
.
16 T. Machan, A. S. Davis, B. Liawruangrath and S. G. Pyne,
Tetrahedron, 2008, 64, 2725.
This work is supported by the Australian Research Council.
Notes and references
1 N. Asano, in Modern Alkaloids: Structure, Isolation, Synthesis
and Biology, ed. E. Fattorusso and O. Taglialatela-Scafati,
Wiley-VCH Verlag, Weinheim, 2008, pp. 111–138.
2 For reviews on their synthesis see: (a) S. G. Pyne and M. Tang,
Curr. Org. Chem., 2005, 9, 1393; (b) M. D. Lopez, J. Cobo and
M. Nogeuras, Curr. Org. Chem., 2008, 12, 718.
Parsons15b
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 713–715 | 715