A R T I C L E S
Campbell et al.
Scheme 1
The key reaction cascade is initiated by an intramolecular
[4+2] cycloaddition reaction of a 1,3,4-oxadiazole with a
tethered dienophile,16,17 where the intrinsic regioselectivity is
dictated by the linking tether. Following the initiating [4+2]
cycloaddition, loss of N2 from the initial cycloadduct provides
an intermediate 1,3-dipole, which is stabilized by the substitution
at the dipole termini. The intrinsic dipole/dipolarophile regi-
oselectivity of the ensuing 1,3-dipolar cycloaddition is reinforced
by the linking tether, and the relative stereochemistry is dictated
by an exclusive endo indole [3+2] cycloaddition, where the
dipolarophile is sterically directed to the face opposite the newly
formed fused lactam.15,18 In total, four C-C bonds, three rings,
five relative stereogenic centers including a C19 N,O-ketal, and
the complete natural product skeleton are assembled in a single
step. Subsequent adjustment of the C3 substituent and acid-
catalyzed oxido bridge cleavage, with intermediate generation
and reaction of an iminium ion flanked by two quaternary
centers, leads to introduction of the sixth tetrahydrofuran ring,
with release of a stable cyanohydrin precursor to a C3 ketone.
Figure 2. Key cycloaddition cascade and retrosynthetic analysis.
In the course of the development of an approach to the total
synthesis of members of the Aspidosperma alkaloids including
vindoline12 anditsextensiontothetotalsynthesisofvinblastine13,14
and vincristine,14 we introduced a powerful tandem [4+2]/[3+2]
cycloaddition cascade reaction of 1,3,4-oxadiazoles that is
especially suited for the preparation of their pentacyclic ring
system.15 Herein, we report the extension of these studies in
the total synthesis of 1 and 2 that is even more ideally suited
for implementation of the cascade cycloaddition reaction, taking
advantage of the cycloadduct intrinsic oxidation state at C19
for closure of the tetrahydrofuran ring and with a modification
that permits introduction of useful functionality following
cleavage of the cycloadduct oxido bridge (Figure 2).
Results and Discussion
The required 1,3,4-oxadiazole 5 bearing the tethered indole
dipolarophile was prepared from 1-benzyltryptamine (7,19
Scheme 1) in a three-step sequence. Treatment of 7 with 1,1-
carbonyldiimidazole (CDI) afforded urea 8 (97%), which was
reacted with methyl oxalyl hydrazide 920 to provide 10.
Dehydration of 10 by treatment of TsCl and Et3N afforded the
oxadiazole 5 (81% for two steps).
The acyl chain carboxylic acid 6 containing the tethered
initiating dienophile was prepared in four steps from oxepane-
2,5-dione (11,21 Scheme 2), which was subjected to methanoly-
(11) For the total synthesis of the related alkaloid aspidophytine, see: (a)
He, F.; Bo, Y.; Altom, J. D.; Corey, E. J. J. Am. Chem. Soc. 1999,
121, 6771. (b) Sumi, S.; Matsumoto, K.; Tokuyama, H.; Fukuyama,
T. Tetrahedron 2003, 59, 8571. (c) Mejia-Oneto, J. M.; Padwa, A.
Org. Lett. 2006, 8, 3275. (d) Marino, J. P.; Cao, G. Tetrahedron Lett.
2006, 47, 7711. (e) Nicolaou, K. C.; Dalby, S. M.; Majumder, U. J. Am.
Chem. Soc. 2008, 130, 14942.
(16) (a) Boger, D. L. Tetrahedron 1983, 39, 2869. (b) Boger, D. L. Chem.
ReV. 1986, 86, 781.
(12) (a) Ishikawa, H.; Elliott, G. I.; Velcicky, J.; Choi, Y.; Boger, D. L.
J. Am. Chem. Soc. 2006, 128, 10596. (b) Choi, Y.; Ishikawa, H.;
Velcicky, J.; Elliott, G. I.; Miller, M. M.; Boger, D. L. Org. Lett.
2005, 7, 4539. (c) Ishikawa, H.; Boger, D. L. Heterocycles 2007, 72,
95. (d) Elliott, G. I.; Velcicky, J.; Ishikawa, H.; Li, Y.; Boger, D. L
Angew. Chem., Int. Ed. 2006, 45, 620. (e) Yuan, Z. Q.; Ishikawa, H.;
Boger, D. L. Org. Lett. 2005, 7, 741. (f) Wolkenberg, S. E.; Boger,
D. L. J. Org. Chem. 2002, 67, 7361.
(17) (a) Vasiliev, N. V.; Lyashenko, Y. E.; Kolomiets, A. F.; Sokolskii,
G. A. Khim. Geterostsikl. Soedin. 1987, 562. (b) Thalhammer, F.;
Wallfahrer, U.; Sauer, J. Tetrahedron Lett. 1988, 29, 3231. (c) Seitz,
G.; Wassmuth, H. Chem.-Ztg. 1988, 112, 80. (d) Warrener, R. N.;
Groundwater, P.; Pitt, I. G.; Butler, D. N.; Russell, R. A. Tetrahedron
Lett. 1991, 32, 1985.
(18) (a) Padwa, A.; Price, A. T. J. Org. Chem. 1998, 63, 556. (b) Padwa,
A.; Price, A. T. J. Org. Chem. 1995, 60, 6258. (c) Padwa, A.; Lynch,
S. M.; Mejia-Oneta, J. M.; Zhang, H. J. Org. Chem. 2005, 70, 2206.
(d) Mejia-Oneta, J. M.; Padwa, A. Org. Lett. 2004, 6, 3241. (e) Mejia-
Oneta, J. M.; Padwa, A. Tetrahedron Lett. 2004, 45, 9115.
(19) Luo, S.; Fu, X.; Fang, F.; Zhuang, Z.; Xiong, W.; Jia, X.; Zhai, H.
Org. Lett. 2006, 8, 115.
(13) Ishikawa, H.; Colby, D. A.; Boger, D. L. J. Am. Chem. Soc. 2008,
130, 420.
(14) Ishikawa, H.; Colby, D. A.; Seto, S.; Va, P.; Tam, A.; Kakei, H.;
Rayl, T. J.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2009, 131,
4904.
(15) (a) Wilkie, G. D.; Elliott, G. I.; Blagg, B. S. J.; Wolkenberg, S. E.;
Soenen, D. R.; Miller, M. M.; Pollack, S.; Boger, D. L. J. Am. Chem.
Soc. 2002, 124, 11292. (b) Elliott, G. I.; Fuchs, J. R.; Blagg, B. S. J.;
Ishikawa, H.; Tao, H.; Yuan, Z. Q.; Boger, D. L. J. Am. Chem. Soc.
2006, 128, 10589.
(20) Christl, M.; Lanzendoerfer, U.; Groetsch, M. M.; Ditterich, E.;
Hegmann, J. Chem. Ber. 1990, 123, 2031.
(21) Van der Ende, A. E.; Kravitz, E. J.; Harth, E. J. Am. Chem. Soc. 2008,
130, 8706.
9
3010 J. AM. CHEM. SOC. VOL. 132, NO. 9, 2010