Enantioselective Synthesis of Dihydrocoumarins
COMMUNICATIONS
retention times: 29.6 min (cis-minor), 34.8 min (trans-
major), 39.2 min (cis-major), 42.0 min (cis-minor)].
Acknowledgements
Financial support from National Natural Science Foundation
of China (No. 20602036, 20872143), the Ministry of Science
and Technology of China (2009ZX09501-018) and the Chi-
Figure 2. Possible stereochemical model.
In conclusion, a highly enantioselectitive synthesis nese Academy of Sciences are greatly acknowledged.
of 3,3,4-trisubstituted 3,4-dihydrocoumarins was real-
ized by the chiral NHC-catalyzed formal [4+2]cyclo-
addition of arylACHTUNGTRENNUNG(alkyl)ketenes and o-quinone me-
References
thides. It was found that the additive methanol was
crucial for the high yields and enantioselectivities.
The rationalization for the use of the additive metha-
nol and expansion of the scope of substrates are un-
derway in our laboratory.
[1] a) R. D. H. Murray, J. Mendez, S. A. Brown, The Natu-
ral Coumarins: Occurrence, Chemistry, and Biochem-
istry, Wiley, New York, 1982; b) R. OꢀKennedy, R. D.
Thornes, Coumarins: Biology, Applications, and Mode
of Action, 1st edn., Wiley, Chichester, UK, 1997.
[2] a) M. Iinuma, T. Tnanka, M. Mizuno, T. Katsuzkai, H.
Ogawa, Chem. Pharm. Bull. 1989, 37, 1813; b) L. M. V.
Tillekeratne, A. Sherette, P. Grossman, L. Hupe, D.
Hupe, R. A. Hudson, Bioorg. Med. Chem. Lett. 2001,
11, 2763.
Experimental Section
[3] a) K. Li, L. N. Foresee, J. A. Tunge, J. Org. Chem. 2005,
70, 2881; b) S. Duan, R. Jana, J. A. Tunge, J. Org.
Chem. 2009, 74, 4612; c) S. Aoki, C. Amanoto, J. Oya-
mada, T. Kitamura, Tetrahedron 2005, 61, 9291; d) E.
Fillion, A. M. dumas, B. A. Kuropatwa, J. Org. Chem.
2006, 71, 409.
[4] J. Barluenga, F. Andina, F. Aznar, Org. Lett. 2006, 8,
2703.
[5] C. Dong, H. Alper, J. Org. Chem. 2004, 69, 5011.
[6] T. Matsuda, M. Shigeno, M. Murakami, J. Am. Chem.
Soc. 2007, 129, 12086.
General Procedure for NHC-Catalyzed Cycloaddtion
of Ketenes and o-Quinone Methides
To the solution of NHC 5a, which was generated freshly
from the NHC precursor 4a (12 mg, 0.02 mmol) and Cs2CO3
(6.5 mg, 0.02 mmol) in DME (2 mL) at room temperature
for 30 min, was added MeOH (5 mL, 0.6 equiv.) and QM 1
(51.2 mg, 0.2 mmol) at À208C. After stirring for 5 min, the
solution of ketene 2 (0.4 mmol) in 2 mL DME was added
via a syringe pump over 1 h. The reaction mixture was
stirred at À208C and monitored by TLC until QM 1 was
fully consumed. A small portion of mixture was collected
[7] C.-R. Piao, Y.-L. Zhao, X.-D. Han, Q. Liu, J. Org.
1
for the H NMR spectroscopy to determine the ratio of the
Chem. 2008, 73, 2264.
cis/trans-isomers. The reaction mixture was passed through a
pad of silica gel and washed with ethyl acetate. The solvent
was removed under reduced pressure and the residue was
purified by flash chromatography on silica gel (petroleum
ether/ethyl acetate) to give the desired product as a mixture
of cis/trans-isomers. A portion of eluent with thee pure cis-
isomer was collected for compound characterization.
[8] A. Shaabani, E. Soleimani, A. H. Rezayan, A. Sarvary,
H. R. Khavasi, Org. Lett. 2008, 10, 2581.
[9] K. Zeitler, C. A. Rose, J. Org. Chem. 2009, 74, 1759.
[10] E. M. Phillips, M. Wandamoto, H. S. Roth, A. W. Ott,
K. A. Scheidt, Org. Lett. 2009, 11, 105.
[11] E. Alden-Danforth, M. T. Scerba, T. Lectka, Org. Lett.
2008, 10, 4951.
A
[12] For a review of the synthesis and application of o-qui-
none methides, see: R. W. Van De Water, T. R. R.
Pettus, Tetrahedron 2002, 58, 5367.
E
ACHTUNGTRENNUNG
77.2 mg (96%) cis:trans=7:1 [60.5 mg (75%) of pure cis;
plus 16.7 mg (21%) of cis/trans mixture]. cis-3aa: white
solid; mp 175–1768C; Rf =0.53 (petroleum ether/ethyl ace-
[13] a) D. Bourissou, O. Guerret, F. P. Gabbaꢃ, G. Bertrand,
Chem. Rev. 2000, 100, 39; b) Y. Cheng, O. Meth-Cohn,
Chem. Rev. 2004, 104, 2507; c) Y. Cheng, B. Wang, X.-
R. Wang, J.-H. Zhang and D.-C. Fang, J. Org. Chem.
2009, 74, 2357; d) B. Wang, J.-Q. Li, Y. Cheng, Tetrahe-
dron Lett. 2008, 49, 485; e) Y. Cheng, M.-F. Liu, D.-C.
Fang, X.-M. Lei, Chem. Eur. J. 2007, 13, 4282.
[14] a) N-Heterocyclic Carbenes in Transition Metal Cataly-
sis, (Ed.: F. Glorius), Top. Organomet. Chem. Vol. 28,
Springer-Verlag, Berlin/Heidelberg, 2007; b) N-Hetero-
cyclic Carbenes in Synthesis, (Ed.: S. P. Nolan), Wiley-
VCH, Weinheim, 2006.
tate=6:1); [a]2D5: +311 (c 0.5, CH2Cl2); H NMR (300 MHz,
1
CDCl3): d=7.11–7.14 (m, 3H), 7.01–7.05 (m, 2H), 6.72 (s,
1H), 6.54 (d, J=7.8 Hz, 2H), 6.46 (s, 1H), 6.45 (d, J=
7.8 Hz, 2H), 5.94 (d, J=10.5 Hz, 2H), 3.88 (s, 1H), 3.68 (s,
3H), 2.25–2.40 (m, 1H), 2.10–2.15 (m, 1H), 0.91 (t, J=
7.5 Hz, 3H); 13C NMR (75 MHz, CDCl3): d=169.0, 158.5,
147.4, 144.8, 144.5, 137.0, 131.3, 129.4, 128.5, 127.6, 126.7,
118.2, 113.5, 107.8, 101.6, 98.5, 56.1, 55.3, 55.1, 28.8, 9.3; IR
(KBr): v=1752 cmÀ1; HR-MS (EI): m/z=402.1471, calcd for
C25H22O5 [M]+: 402.1467M; HPLC analysis: 99% ee (cis),
96% ee (trans), [Daicel CHIRALPAK AD-H column;
208C; 0.8 mLminÀ1; solvent system: i-PrOH/hexanes=2: 98;
[15] For reviews, see: a) D. Enders, O. Niemeier, A. Hensel-
er, Chem. Rev. 2007, 107, 5606; b) N. Marion, S. Diez-
Adv. Synth. Catal. 2009, 351, 2822 – 2826
ꢂ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2825