Probes for Monitoring Gene Therapy
J ournal of Medicinal Chemistry, 1997, Vol. 40, No. 14 2189
(E)-5-(2-[125I]Iodovinyl)-2′-deoxyuridine ([125I]IVDU) (10, 5.6
MBq, 86% radiochemical yield, >98% radiochemical purity,
specific activity 38 GBq/mmol), prepared according to method
B, had a HPLC retention time of 11.49 min whereas the
unreacted (trimethylsilyl)vinyl precursor (6) had a retention
time of 22.51 min.
Heritage Foundation for Medical Research for a stu-
dentship to one of us (K.W.M.). We also thank Dr. Scott
Freeman for providing the KBALB-STK cell line.
Refer en ces
(E)-5-(2-Iodovin yl)-2′-flu or o-2′-deoxyu r idin e (11, Meth od
A) a n d (E)-5-(2-[125I]Iod ovin yl)-2′-flu or o-2′-d eoxyu r id in e
(11, Meth od B). (E)-5-(2-Iodovinyl)-2′-fluoro-2′-deoxyuridine
(IVFRU) was prepared in 78% yield (method A) after recrys-
tallization from methanol as a white solid: mp 107-109 °C
(lit.14 mp 108-110 °C); 1H NMR (DMSO-d6) δ 3.65 (d, 1H, J gem
) 12 Hz, H-5′), 3.82-3.96 (m, 2H, H-4′, H-5′′), 4.20 (dd, 1H,
J 3′,F ) 23, J 2′,3′ ) 6 Hz, H-3′), 5.06 (dd, 1H, J 2′,F ) 54, J 2′,3′ ) 6
Hz, H-2′), 5.47 (br s, 1H, C-5′ OH), 5.72 (br s, 1H, C-3′ OH),
5.92 (d, 1H, J 1′,F ) 18 Hz, H-1′), 7.09 (d, 1H, J trans ) 16 Hz,
CHdCHI), 7.20 (d, 1H, J trans ) 16 Hz, CHdCHI), 8.23 (s, 1H,
uracil H-6), 11.60 (br s, 1H, NH).
(E)-5-(2-[125I]Iodovinyl)-2′-fluoro-2′-deoxyuridine ([125I]IVF-
RU) (11, 5.5 MBq, 85% radiochemical yield, >98% radiochemi-
cal purity, specific activity 41 GBq/mmol), prepared according
to method B, had a HPLC retention time of 11.76 min, whereas
the unreacted (trimethylsilyl)vinyl precursor (7) had a reten-
tion time of 24.19 min.
(1) Mullen, C. A. Metabolic suicide genes in gene therapy. Phar-
macol. Ther. 1994, 63, 199-207.
(2) Moolten, F. Tumor sensitivity conferred by inserted herpes
thymidine kinase genes: paradigm for a prospective cancer
control strategy. Cancer Res. 1986, 46, 5276-5281.
(3) Oldfield, E. H.; Ram, Z.; Culver, K. W.; Blaese, R. M.; DeVroom,
H. L.; Anderson, W. F. Gene therapy for the treatment of brain
tumors using intra-tumoral transduction with the thymidine
kinase gene and intravenous ganciclovir. Hum. Gene Ther.
1993, 4, 60-69.
(4) De Clercq, E. Biochemical aspects of the selective antiherpes
activity of nucleoside analogues. Biochem. Pharmacol. 1984, 33,
2159-2169.
(5) Fyfe, J . A.; Keller, P. M.; Furman, P. A.; Miller, R. I.; Ellion, G.
B. Thymidine kinase from herpes simplex virus phosphorylates
the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine.
J . Biol. Chem. 1978, 253, 8721-8727.
(6) Balzarini, J .; Bohman, C.; Walker, R. T.; De Clercq, E. Compara-
tive cytostatic activity of different antiherpetic drugs against
herpes simplex virus thymidine kinase gene-transfected tumor
cells. Mol. Pharmacol. 1994, 45, 1253-1258.
(E)-5-(2-Iodovin yl)-2′-flu or o-2′-deoxyar abin ou r idin e (12,
Meth od A) a n d (E)-5-(2-[125I]Iod ovin yl)-2′-flu or o-2′-d eoxy-
a r a b in ou r id in e (12, Met h od B). (E)-5-(2-Iodovinyl)-2′-
fluoro-2′-deoxyarabinouridine (IVFAU) was prepared in 64%
yield (method A) after recrystallization from methanol: mp
(7) Culver, K. W.; Ram, Z.; Walbridge, S.; Ishii, H.; Oldfield, E. H.;
Blaese, R. M. In vivo gene transfer with retroviral vector-
producer cells for treatment of experimental brain tumors.
Science 1992, 256, 1550-1552.
(8) Balzarini, J .; Bohman, C.; De Clercq, E. Differential mechanism
of cytostatic effect of (E)-5-(2-bromovinyl)-2′-deoxyuridine, 9-(1,3-
dihydroxy-2-propoxymethyl)guanine, and other antiherpetic drugs
on tumor cells transfected by the thymidine kinase gene of
herpes simplex virus type 1 or type 2. J . Biol. Chem. 1993, 268,
6332-6337.
(9) Balzarini, J .; De Clercq, E.; Ayusawa, D.; Seno, T. Murine
mammary FM3A carcinoma cells transformed with the herpes
simplex virus type 1 thymidine kinase gene are highly sensitive
to the growth-inhibitory properties of (E)-5-(2-bromovinyl)-2′-
deoxyuridine and related compounds. FEBS Lett. 1985, 185,
95-100.
(10) Balzarini, J .; De Clercq, E.; Verbruggen, A.; Ayusawa, D.; Seno,
T. Highly selective cytostatic activity of (E)-5-(2-bromovinyl)-2′-
deoxyuridine derivatives for murine mammary carcinoma (FM3A)
cells transformed with the herpes simplex type 1 thymidine
kinase gene. Mol. Pharmacol. 1985, 28, 581-587.
(11) Hirota, Y.; Arao, Y.; Matsumoto, A.; Nii, S.; Wataya, Y. Different
mechanisms of inhibition of DNA synthesis by (E)-5-(2-bromovi-
nyl)-2′-deoxyuridine in cells transfected with gene for thymidine
kinase of herpes simplex virus type 1 and in cells infected with
the virus. Nucleosides Nucleotides 1995, 14, 2079-2087.
(12) Balzarini, J .; De Clercq, E.; Verbruggen, A.; Ayusawa, D.;
Shimizu, K.; Seno, T. Thymidylate synthase is the principle
target enzyme for the cytostatic activity of (E)-5-(2-bromovinyl)-
2′-deoxyuridine against murine mammary carcinoma (FM3A)
cells transformed with the herpes simplex type 1 or type 2
thymidine kinase gene. Mol. Pharmacol. 1987, 32, 410-416.
(13) Samuel, J .; Gill, M. J .; Iwashina, T.; Tovell, D. R.; Tyrrell, D.
J .; Knaus, E. E.; Wiebe, L. I. Pharmacokinetics and metabolism
of (E)-5-(2-[131I]iodovinyl)-2′-deoxyuridine in dogs. Antimicrob.
Agents Chemother. 1986, 29, 320-324.
(14) Iwashina, T.; Tovell, D. R.; Xu, L.; Tyrrell, D. L.; Knaus, E. E.;
Wiebe, L. I. Synthesis and antiviral activity of IVFRU, a
potential probe for the non-invasive diagnosis of herpes simplex
encephalitis. Drug Des. Delivery 1988, 3, 309-321.
(15) Perlman, M. E.; Watanabe, K. A.; Schinazi, R. F.; Fox, J . J .
Nucleosides. 133. Synthesis of 5-alkenyl-1-(2-deoxy-2-fluoro-
â-D-arabinofuranosyl)cytosines and related pyrimidine nucleo-
sides as potential antiviral agents. J . Med. Chem. 1985, 28,
741-748.
1
178 °C (lit.37 mp 178-179 °C); H NMR (DMSO-d6) δ 3.61-
3.71 (m, 2H, H-5′), 3.79-3.80 (m, 1H, H-4′), 4.17-4.27 (m, 1H,
J 3′,F ) 20 Hz, H-3′), 5.06 (dt, 1H, J 2′,F ) 54, J 1′,2′ ) 3.0 Hz,
H-2′), 5.20 (t, 1H, J OH,5′ ) 6.0 Hz, C-5′ OH), 5.94 (d, 1H, J OH,3′
) 4.9 Hz, C-3′ OH), 6.10 (dd, 1H, J 1′,F ) 10, J 1′,2′ ) 4.9 Hz,
H-1′), 7.15 (d, 1H, J trans ) 14.8 Hz, CHdCHI), 7.23 (d, 1H, J trans
) 14.8 Hz, CHdCHI), 7.98 (s, 1H, uracil H-6), 11.73 (s, 1H,
NH).
(E)-5-(2-[125I]Iodovinyl)-2′-fluoro-2′-deoxyarabinouridine([125I]-
IVFAU) (12, 5.6 MBq, 86% radiochemical yield, >98% radio-
chemical purity, specific activity 38 GBq/mmol), prepared
according to method B, had a HPLC retention time of 13.21
min whereas the unreacted (trimethylsilyl)vinyl precursor (8)
had a retention time of 27.59 min.
(E)-5-(2-Iod ovin yl)a r a bin ou r id in e (13, Meth od A) a n d
(E)-5-(2-[125I]Iod ovin yl)a r a b in ou r id in e (13, Met h od B).
(E)-5-(2-Iodovinyl)arabinouridine was isolated in 75% yield
(method A) after recrystallization from methanol: mp 171-
1
175 °C (lit.23 mp 170-175 °C); H NMR (DMSO-d6) δ 3.62-
3.65 (m, 2H, H-5′), 3.72-3.76 (m, 1H, H-4′), 3.90-3.93 (m, 1H,
H-3′), 4.00-4.05 (m, 1H, H-2′), 5.13 (t, 1H, J OH,5′ ) 5.5 Hz,
C-5′ OH), 5.46 (d, 1H, J OH,3′ ) 4.4 Hz, C-3′ OH), 5.56 (d, 1H,
J OH,2′ ) 5.3 Hz, C-2′ OH), 5.98 (d, 1H, J 1′,2′ ) 4.7 Hz, H-1′),
7.13 (d, 1H, J trans ) 14.6 Hz, CHdCHI), 7.19 (d, 1H, J trans
)
14.6 Hz, CHdCHI), 7.88 (s, 1H, uracil H-6), 11.54 (s, 1H, NH).
(E)-5-(2-[125I]Iodovinyl)arabinouridine ([125I]IVAU) (13, 4.1
MBq, 63% radiochemical yield, >98% radiochemical purity,
specific activity 30 GBq/mmol), prepared using Method B had
a HPLC retention time of 10.24 min, whereas the unreacted
trimethylsilylvinyl precursor (9) had a retention time of 17.69
min.
In Vitr o Up ta k e Stu d ies. Cells (1 × 105) of each cell line
(KBALB, KBALB-STK) were grown in 24-well culture plates.
Radiolabeled compound (10, 11, 12, or 13; 38 pmol; specific
activity ) 30-41 GB1/mmol) was added to each well and
incubated at 37 °C in Dulbecco’s Modified Eagles Medium (0.5
mL). At varying times after exposure to the radiolabeled
compounds, the supernatants were removed, the cells were
rinsed with phosphate-buffered saline, and the adherant cells
were then trypsinized and removed. Cellular uptake of
radioactivity was determined by gamma counting in a Beck-
mann 8000 gamma counter.
(16) Machida, H.; Sakata, S. In vitro and in vivo antiviral activity of
1-â-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU) and
related compounds. Antiviral Res. 1984, 4, 135-141.
(17) Ram, Z.; Culver, K. W.; Walbridge, S.; Blaese, R. M.; Oldfield,
E. H. In situ retroviral-mediated gene transfer for the treatment
of brain tumors in rats. Cancer Res. 1993, 53, 83-88.
(18) Tjuvajev, J . G.; Stockhammer, G.; Desai, R.; Uehara, H.;
Watanabe, K.; Gansbacher, B.; Blasberg, R. G. Imaging the
expression of transfected genes in vivo. Cancer Res. 1995, 55,
6126-6132.
(19) Tjuvajev, J . G.; Finn, R.; Watanabe, K.; J oshi, R.; Oku, T.;
Kennedy, J .; Beattie, B.; Koutcher, J .; Larson, S.; Blasberg, R.
G. Noninvasive imaging of herpes virus thymidine kinase gene
transfer and expression: A potential method for monitoring
clinical gene therapy. Cancer Res. 1996, 65, 4087-4095.
Ack n ow led gm en t. We are grateful to the Medical
Research Council of Canada (Grant No. MT-12304) for
financial support of this work and to the Alberta