have received a lot of attention.3 To the best of our
knowledge, ratiometric fluorescent sensors for Ag+, espe-
cially with fluorescence enhancement technique, still remain
rare.3f,g Herein, we describe a selective ratiometric fluorescent
sensor for Ag+ based on a molecular motif with one pyrene
and two adenine moieties (compound 1, Scheme 1).
is expected to form; formation of such complex would induce
the pyrene moiety in 1 to be adjacent to each other, and
accordingly result in pyrene excimer emission. The results
show that compound 1 can indeed selectively bind Ag+
inducing the gradual enhancement of the pyrene excimer
emission and the simultaneous decrease of the monomer
emission of the pyrene moiety. Therefore, highly selective
ratiometric fluorescence determination of Ag+ is realized with
compound 1.
The synthesis of 1 started from 1,1,1-tris (hydroxymethyl)
ethane which was converted to trisulfonate 2 by reaction with
benzenesulfonyl chloride. After reaction with 4-nitrophenol
in the presence of K2CO3, compound 2 was transformed into
compound 3. Reduction of 3 and further reaction with maleic
anhydride led to trimaleimide 5. Reaction of trimaleimide 5
with thiol 6 afforded 7 exclusively by controlling the amount
of 6 added to the reaction mixture. In situ reaction of bis-
maleimide 7 with thiol 8 yielded the desired compound 1.8
Figure 1 shows the fluorescence spectrum of compound 1
and those in the presence of different amounts of AgClO4
Scheme 1. Chemical Structure of Compound 1
Our design employs coordination between Ag+ and
nucleobases to induce pyrene excimer emission. Recent
results have revealed that the nucleobases offer a versatile
platform for metal ion coordinations.4 For instance, thymine
can bind Hg2+ specifically, and by making use of this feature
a sensitive and selective “turn on” fluorescent chemosensor
for Hg2+ ion based on a pyrene-thymine dyad has been
described by our group recently.5 9-Substituted adenine offers
three main coordination sites (N1, N3, and N7).6 While most
of the complexes of adenine with metal ions exhibit mono-
and bidentate coordination modes, the 3N (µ-N1, N3, N7)
coordination mode for 9-substituted adenine has been
observed in silver-adenine metallaquartets.7 When com-
pound 1 is allowed to react with Ag+, an extended complex
Figure 1
.
Fluorescence spectra of compound 1 (2.0 × 10-5 M in
THF) in the presence of increasing amounts of AgClO4 (from 0 to
27 µM).
(3) See, for example: (a) Kwon, O.-S.; Kim, H.-S. Supramol. Chem.
2007, 19, 277–281. (b) Akkaya, E. U.; Coskun, A. J. Am. Chem. Soc. 2005,
127, 10464–104651. (c) Rurack, K.; Kollmannsberger, M.; Resch-Genger,
U.; Daub, J. J. Am. Chem. Soc. 2000, 122, 968–969. (d) Chen, J. L.; Zhu,
C. Q. Anal. Chim. Acta 2005, 546, 147–153. (e) Tong, H.; Wang, L. X.;
Jing, X. B.; Wang, F. S. Macromolecules 2002, 35, 7169–7177. (f) Paker,
J.; Glass, T. E. J. Org. Chem. 2001, 66, 6505–6512. (g) Yang, R. H.; Chan,
W. H.; Lee, A. W. M.; Xia, P. F.; Zhang, H. K.; Li, K. A. J. Am. Chem.
Soc. 2003, 125, 2884–2885.
in THF. Compound 1 shows typical monomeric emission
bands of pyrene unit around 376 and 395 nm (λex ) 344
nm);9 the emission in the range of 450-600 nm was rather
(7) (a) Purohit, C. S.; Verma, S. J. Am. Chem. Soc. 2006, 128, 400–
401. (b) Purohit, C. S.; Mishra, A. K.; Verma, S. Inorg. Chem. 2007, 46,
8493–8495. (c) Purohit, C. S.; Verma, S. J. Am. Chem. Soc. 2007, 129,
3488–3489.
(4) (a) Lippert, B. Coord. Chem. ReV. 2000, 200-202, 487–516. (b)
Navarro, J. A. R.; Lippert, B. Coord. Chem. ReV. 1999, 185-186, 653–
667. (c) Martin, R. B. Acc. Chem. Res. 1985, 18, 32–38. (d) Schreiber, A.;
Lu¨th, M. S.; Erxleben, A.; Fusch, E. C.; Lippert, B. J. Am. Chem. Soc.
1996, 118, 4124–4132. (e) Sigel, H. Chem. Soc. ReV. 1993, 22, 255–267.
(f) Garc´ıa-Tera´n, J. P.; Castillo, O.; Luque, A.; Garc´ıa-Couceiro, U.; Roma´n,
P.; Lezama, L. Inorg. Chem. 2004, 4549–4551.
(8) Characterization data of compound 1: mp 138 °C dec; 1H NMR (600
MHz, CDCl3, ppm) δ 8.35-8.38 (m, 3H), 8.12-8.18 (m, 4H), 8.00-8.05
(m, 4H), 7.79 (s, 2H), 7.16-7.19 (m, 6H), 6.98 (d, J ) 8.7 Hz, 6H), 5.84
(br, 4H), 5.21 (s, 2H), 4.17-4.20 (m, 4H), 4.08 (s, 6H), 3.78-3.80 (m,
3H), 3.59-3.60 (m, 2H), 3.22-3.27 (m, 3H), 3.09-3.11 (m, 2H), 2.92-2.93
(m, 3H), 2.76-2.80 (m, 3H), 2.60-2.65 (m, 3H), 1.91-1.93 (m, 5H),
1.64-1.67 (m, 12H), 1.40-1.44 (m, 4H), 1.37-1.39 (m, 6H), 1.20-1.25
(m, 6H); 13C NMR (150 MHz, CDCl3) δ 174.73, 174.67, 173.0, 172.8,
158.0, 154.4, 151.9, 149.1, 139.5, 130.9, 130.25, 130.18, 129.8, 128.3,
126.64, 126.57, 126.4, 126.3, 125.9, 124.9, 124.1, 123.9, 123.6, 123.5, 122.5,
118.6, 114.2, 70.4, 69.6, 69.2, 44.8, 42.6, 39.5, 38.1, 38.0, 35.2, 35.0, 30.9,
30.5, 28.8, 28.4, 28.1, 28.0, 27.8, 27.3, 25.2, 24.6, 16.2, 7.6; MALDI-TOF
(M + 2H)+, 1541.7, (M + Na + H)+, 1563.7; HRMS (MALDI-TOF) calcd
(5) Wang, Z.; Zhang, D. Q.; Zhu, D. B. Anal. Chim. Acta 2005, 549,
10–13. (a) Other chemical sensors for Hg2+ have been also reported: (a)
Lee, J.-S.; Han, M. S.; Mirkin, C. A. Angew. Chem., Int. Ed. 2007, 46,
4093–4096. (b) Ono, A.; Togashi, H. Angew. Chem., Int. Ed. 2004, 43,
4300–4302. (c) Tang, Y. L.; He, F.; Yu, M. H.; Feng, F. D.; An, L. L.;
Sun, H.; Wang, S.; Li, Y. L.; Zhu, D. B. Macromol. Rapid Commun. 2006,
27 (6), 389–392. (d) Liu, B.; Tian, H. Chem. Commun. 2005, 3156–3158.
(e) Zhang, H.; Han, L. F.; Zachariasse, K. A.; Jiang, Y. B. Org. Lett. 2005,
7 (19), 4217–4220. (f) Guo, X. F.; Qian, X. H.; Jia, L. H. J. Am. Chem.
Soc. 2004, 126, 2272–2273. (g) Nolan, E. M.; Lippard, S. J. J. Am. Chem.
Soc. 2003, 125, 14270–1427.
+
for C84H94N13O10S3 (M + H)+ 1540.6403, found 1540.6388. COSY,
HMBC, HSQC, and TOCSY spectra are provided in the Supporting
(6) (a) Arpalahti, J.; Klika, K. D.; Molander, S. Eur. J. Inorg. Chem.
2000, 1007–1013. (b) De Meester, P.; Goodgame, D. M. L.; Skapski, A. C.;
Warnke, Z. Biochem. Biophys. Acta 1973, 324, 301–303.
Infromation.
(9) Bodenant, B.; Fages, F.; Delville, M. H. J. Am. Chem. Soc. 1998,
120, 7511–7519.
2272
Org. Lett., Vol. 10, No. 11, 2008