This work was supported by KOSEF/MEST through WCU
project (R31-2008-000-10010-0), a Seeds Innovation program
‘‘Practicability Verification Stage’’ from Japan Science and
Technology Agency (JST), a Grant-in-Aid (Nos. 21750146
and 19205019) and a Global COE program from MEXT.
Notes and references
1 G. Franz and R. A. Sheldon, Ullmann’s Encyclopedia of Industrial
Chemistry, VCH, Weinheim, Germany, 5th edn, 1991.
2 R. A. Sheldon and J. K. Kochi, Metal Catalyzed Oxidation of
Organic Compounds, Academic Press, New York, 1981, ch. 10.
3 R. E. Ballard and A. McKillop, US. Pat., 1984, 4,482,438.
4 (a) R. Clarke, A. Kuhn and E. Okoh, Chem. Brit., 1975, 11, 59;
(b) L. Syper, Tetrahedron Lett., 1966, 7, 4493; (c) T.-L. Ho,
Synthesis, 1973, 347.
5 M. Oelgemoller, C. Jung, J. Ortner, J. Mattay and
¨
E. Zimmermann, Green Chem., 2005, 7, 35.
6 F. Cavani and J. H. Teles, ChemSusChem, 2009, 2, 508.
7 W. T. Hess, in Kirk-Othmer Encyclopedia of Chemical Technology,
Wiley, New York, 4th edn, 1995, vol. 13, p. 961.
Scheme 1
8 (a) A. Das, V. Joshi, D. Kotkar, V. S. Pathak,
V. Swayambunathan, P. V. Kamat and P. K. Ghosh, J. Phys.
Chem. A, 2001, 105, 6945; (b) W. Song, J. Ma, C. Chen and
J. Zhao, J. Photochem. Photobiol., A, 2006, 183, 31.
9 (a) M. A. Fox, Photoinduced Electron Transfer, ed. M. A. Fox and
M. Chanon, Elsevier, Amsterdam, 1988, pp. 1–27; (b) M. Julliard,
C. Legris and M. Chanon, J. Photochem. Photobiol., A, 1991, 61, 137;
(c) K. Ohkubo and S. Fukuzumi, Bull. Chem. Soc. Jpn., 2009, 82, 303.
10 F. D. Lewis, A. M. Bedell, R. E. Dykstra, J. E. Elbert, I. R. Gould
and S. Farid, J. Am. Chem. Soc., 1990, 112, 8055.
11 (a) K. Ohkubo, K. Suga, K. Morikawa and S. Fukuzumi, J. Am.
Chem. Soc., 2003, 125, 12850; (b) K. Suga, K. Ohkubo and
S. Fukuzumi, J. Phys. Chem. A, 2005, 109, 10168.
12 S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V. Tkachenko
and H. Lemmetyinen, J. Am. Chem. Soc., 2004, 126, 1600.
13 The electron-transfer state of Acr+–Mes forms a bimolecular
p-dimer with Acr+–Mes; see: S. Fukuzumi, H. Kotani and
K. Ohkubo, Phys. Chem. Chem. Phys., 2008, 10, 5159.
Fig.
2
Cyclic voltammograms of (a) Acr+–Mes and (b)
Me2Acr+–Mes (10 mM) in deaerated MeCN containing TBAPF6
(0.1 M) at 298 K.
14 H. Kotani, K. Ohkubo and S. Fukuzumi, J. Am. Chem. Soc., 2004,
126, 15999.
electron-transfer states of Acr+–Mes and Me2Acr+–Mes. The
Ered value of Me2Acr+–Mes (ꢁ0.67 V vs. SCE) is 0.1 eV more
negative than that of Acr+–Mes (ꢁ0.57 V).
15 The yield of H2O2 was determined by 1H NMR spectroscopy (see
ESI S1bw) as well as by titration by I3ꢁ using UV-vis; see (a) R. D. Mair
and A. J. Graupner, Anal. Chem., 1964, 36, 194; (b) S. Fukuzumi,
S. Kuroda and T. Tanaka, J. Am. Chem. Soc., 1985, 107, 3020.
16 S. Fukuzumi, K. Ohkubo, T. Suenobu, K. Kato, M. Fujitsuka and
O. Ito, J. Am. Chem. Soc., 2001, 123, 8459.
Dynamics of the electron-transfer reduction of O2 by the
electron-transfer states of Acr+–Mes and Me2Acr+–Mes were
examined by nanosecond laser flash photolysis. The rates of
the electron-transfer reduction were determined from
the quenching of the transient absorption due to the
electron-transfer state by O2 to be 6.8 ꢂ 108 Mꢁ1 sꢁ1 for
17 No oxygenation of p-xylene by singlet oxygen was observed in
photoreaction of p-xylene with zinc tetraphenylporphyrin as a
singlet oxygen photosensitizer.
18 The yield of H2O2 is smaller than that of aldehydes since H2O2 may
have partially decomposed under the present experimental
conditions. The isolated yield of p-tolualdehyde was 40%
(see ESI S2w for the experimental procedure for the isolation).
19 Photooxygenation of the mesitylene moiety in Acr+–Mes with O2
may occur in the absence of substrate under extended photo-
irradiation. See: A. C. Benniston, K. J. Elliott, R. W. Harrington
and W. Clegg, Eur. J. Org. Chem., 2009, 253.
+ 14
+
Acrꢀ–Mesꢀ
,
and 2.0 ꢂ 1010 Mꢁ1 sꢁ1 for Me2Acrꢀ–Mesꢀ
(see ESI S6w). Thus, the reducing ability of Me2Acrꢀ–Mesꢀ+ is
significantly enhanced by the methyl substitution. This may be
the reason why a 100% yield of tolualdehyde and H2O2 with
a
higher quantum yield (0.37) was achieved by using
Me2Acr+–Mes.
20 A. J. Bard and L. R. Faulkner, Electrochemical Methods:
Fundamentals and Applications, John Wiley & Sons, New York,
2001, ch. 10, pp. 368–416.
In conclusion, the electron-transfer states of Acr+–Mes
and Me2Acr+–Mes, which have both high oxidizing and
reducing ability, make it possible to produce both aromatic
aldehydes and H2O2 selectively in the photocatalytic oxygena-
tion of alkyl aromatic compounds with oxygen for the first
time. After aromatic aldehydes were formed, no further
21 For ESR spectrum of O2 ꢁ, see: R. N. Bagchi, A. M. Bond,
ꢀ
¨
F. Sholz and R. Stosser, J. Am. Chem. Soc., 1989, 111, 8270.
22 (a) M. Bersohn and J. R. Thomas, J. Am. Chem. Soc., 1964, 86,
959; (b) J. A. Howard, in Peroxyl Radicals, ed. Z. B. Alfassi, Wiley,
Chichester, 1997, pp. 283–334.
23 K. Ohkubo, K. Suga and S. Fukuzumi, Chem. Commun., 2006, 2018.
24 D. T. Sawyer, T. S. Calderwood, K. Yamaguchi and C. T. Angelis,
Inorg. Chem., 1983, 22, 2577.
oxidation takes place because electron transfer from aromatic
+
moiety is thermodynamically
aldehydes to the Mesꢀ
25 The deprotonation of toluene radical cation occurs efficiently in the
presence of aqueous sulfuric acid since the acidity of the toluene
radical cation (pKa = ꢁ13 in MeCN) is much stronger than that
of sulfuric acid, see: A. M. de P. Nicholas and D. R. Arnold,
Can. J. Chem., 1982, 60, 2165.
unfavorable. Thus, the use of charge-separation dyads as
photocatalysts paves a new way for the selective oxygenation
of alkyl aromatic compounds with simultaneous formation
of H2O2.
ꢃc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 601–603 | 603