convenient practically. The nitropyridines 4-6 were prepared in 40-85% yields. Lowering of the yield of the
nitropyridines is seen with an increase in the acceptor property of the X substituent in the enamine causing a
decrease in the nucleophilicity of the amino group. With use in the cyclocondensation of the nitroacetophenone
enamine the 3,5-dinitro-2-phenylpyridine (6e) was obtained in 40% yield but with the nitroacetone enamine the
2-methyl-3,5-dinitropyridine was not detected, even in trace amounts. A side reaction of the acylation of the
enamines can also affect the yield of the nitropyridines [11].
The structures of the compounds 2d, 4a, 5a,d, 6a and 6f synthesized for the first time were confirmed
from H NMR and IR spectroscopic (Table 1), from mass-spectrometric (Table 2) data and from elemental
1
analysis. The elemental analytical data is given in the Experimental section.
TABLE 1. Spectroscopic Characteristics of Compounds 2d, 4a, 5a,d, and 6a,f
Com-
pound
IR spectrum, ν, сm–1
1Н NMR spectrum, δ, ppm (J, Hz)
2d
1606 (C=C), 1659 (CO), 0.67-0.79 (2H, m, CH2); 0.91-0.96 (2H, m, CH2);
3297, 3142 (NH2)
1.68 (1H, m, СН); 5.00 (1Н, br. s, NH2); 5.18 (1Н, s, H-2);
9.65 (1H, br. s, NH2)
4a
5a
5d
1355, 1528 (NO2),
1654 (CO)
7.45–7.85 (5Н, m, COC6H5); 8.86 (1H, m, H-4);
9.29 (1H, d, J = 1.7, H-2), 9.62 (1H, d, J = 2.4, H-6)
1342, 1526 (NO2),
1658 (CO)
2.67 (3Н, s, СН3); 7.51-7.81 (5H, m, COC6H5);
8.42 (1Н, d, J = 2.4, Н-4); 9.44 (1Н, d, J = 2.4, Н-6)
1352, 1519 (NO2),
1682 (CO)
1.17-1.30 (2H, m, –CH2–); 1.34-1.42 (2H, m, CH2);
2.43 (1H, m, СН); 2.83 (3Н, s, СН3);
8.72 (1Н, d, J = 2.4, Н-4); 9.39 (1Н, br. s, Н-6)
6a
6f
1352, 1520 (NO2),
1666 (CO)
7.24-7.68 (10Н, m, C6H5, COC6H5);
8.62 (1H, d, J = 2.6, H-4); 9.61 (1H, d, J = 2.6, H-6)
1342, 1592 (NO2),
1710 (CO)
1.13 (3Н, t, J = 7.1, СН2–СН3);
4.24 (2Н, q, J = 7.1, СН2–СН3); 7.45-7.63 (5Н, m, C6H5);
8.86 (1Н, m, Н-4); 9.55 (1Н, d, J = 2.2, Н-6)
TABLE 2. Mass Spectra of Compounds 2d, 4a, 5a,d, and 6a,f
Com-
pound
m/z (I, %)*
2d
4a
125 [М]+• (47.63), 110 [М−CH3]+ (14.41), 84 [М−CH3−C2H2]+ (100), 42 (18.15)
228 [М]+▪ (34.86), 211 [М−OH]+ (25.89), 105 [C6H5CO]+ (100), 77 [C6H5]+ (69.91),
51 (15.84)
5a
5d
243 [М+1]+▪ (11.45), 242 [М]+▪ (64.02), 240 [М−H2]+▪ (65.95), 105 [C6H5CO]+ (100),
77 [C6H5]+ (97.67), 51 (24.69), 50 (16.17)
206 [М]+▪ (55.40), 191 [М−CH3]+ (33.68), 189 [М−OH]+ (11.78),
178 [М−CO]+▪ (25.57), 165 [М−CH3−C2H2]+ (100), 160 [М−NO2]+▪ (13.02),
153 (37.14), 91 (15.43), 69 (65.23), 63 (10.91), 50 (18.52), 41 (29.34), 39 (16.23)
6a
6f
305 [М+1]+▪ (13.33), 304 [М]+▪ (65.66), 276 [М−CO]+▪ (26.41),
258 [М−NO2]+▪ (19.68), 229 (14.44), 105 [C6H5CO]+ (88.00), 77 [C6H5]+ (100),
51 (20.98)
272 [М]+▪ (28.38), 244 [М−CO]+▪ (14.28), 243 [М−C2H5]+ (100),
227 [М−C2H5O]+ (13.42), 198 [М−CO−NO2]+▪ (10.03), 197 [М−C2H5−NO2]+ (38.16),
181 [М−C2H5O−NO2]+ (12.62), 153 [М−C2H5O−NO2−CO]+ (17.13), 127 (11.33),
77 [C6H5]+ (18.61), 29 [C2H5]+ (18.68), 28 [CO] (11.10)
_______
* I is the percentage of the maximum peak intensity and is quoted for peaks
with I > 10%.
949