Table 1 Etherification and radical cyclization
cyclohexadienone, and the final lactones have functionality
that is appropriate for further elaboration.
We thank the Natural Sciences and Engineering Research
Council of Canada for financial support.
Notes and references
1 (a) G. Bringmann, G. Lang, T. A. M. Gulder, H. Tsurata,
J. Muhlbacher, K. Maksimenka, S. Steffens, K. Schaumann,
¨
R. Stohr, J. Wiese, J. F. Imhoff, S. Perovic-Ottstadt, O. Boreiko
¨
and W. E. G. Muller, Tetrahedron, 2005, 61, 7252–7265;
¨
(b) G. Bringmann, T. A. M. Gulder, G. Lang, S. Schmitt,
R. Stohr, J. Wiese, K. Nagel and J. F. Imhoff, Mar. Drugs, 2007,
¨
K. Schaumann, S. Steffens, P. G. Rytik, U. Hentschel,
¨
5, 23–30; (c) G. Bringmann, G. Lang, J. Muhlbacher,
32
33
34
R = Pr, R1 = H, R2 = H
R = Me, R1 = H, R2 = Me
R = Me, R1 = Me, R2 = H
32a 64%
33a 67%
34a 63%
32b 80%
33b 80%
34b 74%
J. Morschhauser and W. E. G. Muller, Marine Molecular
¨
¨
Biotechnology, in Sponges (Porifera), ed. W. E. G. Muller,
¨
Springer, Berlin, 2003, vol. 1, pp. 231–253; (d) W. E. G. Muller,
G. Bringmann, G. Lang, J. Muhlbacher, K. Schaumannand
¨
S. Steffens, WO 026 854 A1, 2004; (e) G. Bringmann, G. Lang,
¨
Conditions: (a) galactal 22, NIS, MeCN; (b) Bu3SnH, AIBN, PhH,
85 1C.
J. Muhlbacher, K. Schaumann, S. Steffens, P. G. Rytik,
¨
U. Hentschel, J. Morschhauser and W. E. G. Muller, Prog. Mol.
¨
¨
Subcell. Biol., 2003, 37, 231–253.
2 Review on desymmetrization of 1,4-cyclohexadienes: A. Studer
and F. Schleth, Synlett, 2005, 3033–3041.
3 Ionic methods for desymmetrizing 2,5-cyclohexadienones to
products with high ee: (a) Q. Liu and T. Rovis, J. Am. Chem.
Soc., 2006, 128, 2552–2553; (b) E. Merino, R. P. A. Melo,
M. Ortega-Guerra, M. Ribagorda and M. C. Carreno, J. Org.
Chem., 2009, 74, 2824–2831; (c) Y. Hayashi, H. Gotoh, T. Tamura,
H. Yamaguchi, R. Masui and M. Shoji, J. Am. Chem. Soc., 2005,
127, 16028–16029; (d) N. T. Vo, R. D. M. Pace, F. O’Hara and
M. J. Gaunt, J. Am. Chem. Soc., 2008, 130, 404–405.
´ ´
4 M. C. Carreno, M. Gonzalez-Lopez and A. Urbano, Angew.
Chem., 2006, 45, 2737–2741.
5 (a) G. Stork, R. Mook, Jr., S. A. Biller and S. D. Rychnovsky,
J. Am. Chem. Soc., 1983, 105, 3741–3742; (b) Y. Ueno, K. Chino,
M. Watanabe, O. Moriya and M. Okawara, J. Am. Chem. Soc.,
1982, 104, 5564–5566.
6 (a) F. Villar and P. Renaud, Tetrahedron Lett., 1998, 39,
8655–8658; (b) A. L. J. Beckwith and D. M. Page, J. Org. Chem.,
1998, 63, 5144–5153; (c) O. Corminboeuf, P. Renaud and
C. H. Schiesser, Chem.–Eur. J., 2003, 9, 1578–1584.
7 (a) F. Villar, O. Equey and P. Renaud, Org. Lett., 2000, 2,
1061–1064; (b) F. Villar, T. Kolly-Kovac, O. Equey and
The above reaction sequence for desymmetrization of cross-
conjugated ketones of type 2 is general, as it was successfully
applied to the three additional substrates 32,16 33,4 and 344
listed in Table 1, which shows the iodoetherification and
radical closure steps. The stereochemical outcome follows
the pattern established for 2-28, as indicated by TROESY
measurements on 32b–34b. In the case of the propyl series
1
(Table 1, compound 32) the H and 13C NMR spectra of the
initial iodoether showed a small amount of a contaminant
(ca. 5%, assuming it is an isomer), but the radical cyclization
product was pure, as was the final lactone (32d, 64% from 32c,
Table 2).
Each of the radical cyclization products 32b, 33b, and 34b
was degraded to the corresponding lactone shown in Table 2,
using conditions established in making lactone 31. The inter-
mediate dialdehydes 33c and 34c were sensitive, and we were
unable to obtain them pure, but the crude materials gave the
desired pure lactones 33d and 34d in the overall yields
indicated in Table 2. We did not establish the stereochemistry
at C* in 32c–34c, nor at C(4) in 33d; but 33d was shown to be a
single isomer (as were all the other lactones we made).
Our results show that the present method for
desymmetrization tolerates alkyl substitution on the starting
P. Renaud, Chem.–Eur. J., 2003, 9, 1566–1577; (c) J. C. Lo
A. M. Gomez and B. Fraser-Reid, Aust. J. Chem., 1995, 48,
333–352.
´
pez,
´
8 Cf. R. Nouguier, S. Gastaldi, D. Stien, M. Bertrand, F. Villar,
O. Andrey and P. Renaud, Tetrahedron: Asymmetry, 2003, 14,
3005–3018.
9 (a) A. De Mesmaeker, P. Hoffmann, T. Winkler and A. Waldner,
Synlett, 1990, 201–204; (b) A. De Mesmaeker, P. Hoffmann and
B. Ernst, Tetrahedron Lett., 1989, 30, 57–60.
10 Attempted cleavage of the triol, using NaIO4 or Pb(OAc)4, gave
complex mixtures.
Table 2 Formation of g-lactones
11 Made by the method of: B. K. Shull, Z. Wu and M. Koreeda,
J. Carbohydr. Chem., 1996, 15, 955–964.
12 By acetate hydrolysis, elimination of OMs to form an enol ether,
diol cleavage and acid hydrolysis.
13 A. Fernandez-Mayoralas, A. Marra, M. Trumtel, A. Veyrieres and
P. Sinay, Carbohydr. Res., 1989, 188, 81–95. We used a different
¨
preparation (see ESIw).
14 (a) R. A. Alonso, G. D. Vite, R. E. McDevitt and B. Fraser-Reid,
J. Org. Chem., 1992, 57, 573–584; (b) J. Thieme and B. Meyer,
Chem. Ber., 1980, 113, 3067–3069.
15 In principle, the Jones reagent should serve for both the hydrolysis
of 30 and its subsequent oxidation, but this procedure gave a lower
yield (one experiment).
16 J. McKinley, A. Aponick, J. C. Raber, C. Fritz, D. Montgomery
and C. T. Wigal, J. Org. Chem., 1997, 62, 4874–4876. We used the
preparative method of ref. 4.
32b R = Pr, R1 = H, R2 = H
32c 86%a, 80%b 32d 64%c
33b R = Me, R1 = H, R2 = Me 33c -%
34b R = Me, R1 = Me, R2 = H 34c -%
33d 53%d
34d 62%e
a
b
For hydrolysis with CF3CO2H. For diol cleavage with Pb(OAc)4.
c
d
From 32c. Yield from 33b. From 34b.
e
ꢂc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 701–703 | 703