10.1002/chem.201700604
Chemistry - A European Journal
FULL PAPER
8779; h) H. Pellissier, Chem. Rev. 2013, 113, 442-524. i) K. S. Halskov,
B. S. Donslund, S. Barfusser, K. A. Jorgensen, Angew. Chem., Int. Ed.
2014, 53, 4137-4141.
Experimental Section
General Procedure for the Asymmetric Michael Reaction
[6]
For selected examples of bioactive molecule syntheses by
organocatalysis, see: a) R. Marcia de Figueiredo, M. Christmann, Eur. J.
Org. Chem. 2007, 2575–2600; b) E. Marqués-López, R. P. Herrera, M.
Christmann, Nat. Prod. Rep. 2010, 27, 1138–1167; c) S. B. Jones, B.
Simmons, A. Mastracchio, D. W. C. MacMillan, Nature 2011, 475, 183–
188; d) Z. Zhang, J. C. Antilla, Angew. Chem. Int. Ed. 2012, 51, 11778–
11782; e) M. E. Abbasov, D. Romo, Nat. Prod. Rep. 2014, 31, 1318–
1327; f) J. McNulty, C. Zepeda-Velazquez, Angew. Chem., Int. Ed.
2014, 53, 8450-8454; g) Y. Hayashi, S. Ogasawara, Org. Lett. 2016,
18, 3426-3429.ꢀh) M. Candy, T. Durand, J.-M. Galano, C. Oger, Eur. J.
Org. Chem. 2016, 5813-5816.
1 mol% of catalyst was dissolved in methanol and chloroform
(1:1) (20 mL). trans--nitrostyrene (1.0 mmol, 1.0 equiv.) and
propanal (3.0 mmol, 3.0 equiv.) were added and the reaction
mixture (homogeneous solution) was stirred at 0 °C. The
reaction conversion was monitored by GC. After completion, the
reaction mixture was concentrated under vacuum and the
residue was dissolved in ethyl acetate. This solution was
washed twice with water (2 x 20 mL), dried over magnesium
sulfate and concentrated to yield the desired product.
[7]
For selected pioneer works and reviews on peptides as organocatalysts,
see: a) S. Inoue, Adv. Polym. Sci. 1976, 21, 78-106; b) J.-I. Oku, N. Ito,
S. Inoue, Makromol. Chem. 1979, 180, 1089-1091; c) E. R. Jarvo, S. J.
Miller, Tetrahedron 2002, 58, 2481-2495; d) A. Berkessel, Curr. Opin.
Chem. Biol. 2003, 7, 409-419; e) E. A. Colby Davie, S. M. Mennem, Y.
Xu, J. A. Miller, Chem. Rev. 2007, 107, 5759-5812; f) Y. Arakawa, M.
Wiesner, H. Wennemers, Adv. Synth. Catal. 2011, 353, 1201-1206; g) J.
Li, G. Yang, Y. Qin, X. Yang, Y. Cui, Tetrahedron: Asymmetry 2011, 22,
613-618; h) X. Fan, S. Sayalero, M. A. Pericàs, Adv. Synth. Catal. 2012,
354, 2971-2976; i) B. Lewandowski, H. Wennemers, Curr. Opin. Chem.
Biol. 2014, 22, 40-46; j) K. S. Feu, A. F. de la Torre, S. Silva, M. A. F.
de Moraes Junior, A. G. Corrêa, M. W. Paixão, Green Chem. 2014, 16,
3169-3174; k) C. Rodríguez-Escrich, M. A. Pericàs, Eur. J. Org. Chem.
2015, 1173-1188.
Acknowledgements
The Université Paris 13, Sorbonne Paris Cité, Centre National
de la Recherche Scientifique (CNRS) and Ministère de
l’Enseignement Supérieur et de la Recherche (MESR) are
gratefully acknowlegded for financial support.
Keywords: organocatalysis • mechanism studies • Michael
addition • DFT calculations • phosphonopeptide
[8]
a) S. J. Miller, Acc. Chem. Res. 2004, 37, 601-610; b) P. A. Jordan, K.
J. Kayser-Bricker, S. J. Miller, Proc. Natl. Acad. Sci. 2010, 107, 20620-
20624; c) P. A. Lichtor, S. J. Miller, ACS Comb. Sci. 2011, 13, 321-326;
d) D. K. Romney, S. J. Miller, Org. Lett. 2012, 14, 1138-1141; e) L.
Tuchman-Shukron, S. J. Miller, M. Portnoy, Chem. Eur. J. 2012, 18,
2290-2296; f) C. T. Mbofana, S. J. Miller, J. Am. Chem. Soc. 2014, 136,
3285-3292; g) M. E. Diener, A. J. Metrano, S. Kusano, S. J. Miller, J.
Am. Chem. Soc. 2015, 137, 12369-12377; h) C. R. Shugrue, S. J.
Miller, Angew. Chem. Int. Ed. 2015, 54, 11173-11176; i) A. J. Metrano,
N. C. Abascal, B. Q. Mercado, E. K. Paulson, S. J. Miller, Chem.
Comm. 2016, 52, 4816-4819.
[1]
[2]
D. W. MacMillan, Nature. 2008, 455, 304-308.
a) B. List, R. A. Lerner, C. F. Barbas, J. Am. Chem. Soc. 2000, 122,
2395-2396; b) K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am.
Chem. Soc. 2000, 122, 4243-4244.
[3]
For selected reviews of enamine and iminium catalysis, see: a) S.
Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107,
5471-5569; b) A. Erkkilä, I. Majander, P. M. Pihko, Chem. Rev. 2007,
107, 5416−5470. c) M. Nielsen, D. Worgull, T. Zweifel, B. Gschwend, S.
Bertelsen, K. A. Jorgensen, Chem. Commun. 2011, 47, 632-649; d) P.
Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Angew. Chem. Int. Ed.
2008, 47, 6138-6171.
[9]
a) P. Krattiger, C. McCarthy, A. Pfaltz, H. Wennemers, Angew. Chem.
Int. Ed. 2003, 42, 1722-1724; b) P. Krattiger, R. Kovasy, J. D. Revell, S.
Ivan, H. Wennemers, Org. Lett. 2005, 7, 1101-1103; c) M. Wiesner, J.
D. Revell, S. Tonazzi, H. Wennemers, J. Am. Chem. Soc. 2008, 130,
5610-5611; d) M. Wiesner, J. D. Revell, H. Wennemers, Angew. Chem.
Int. Ed. 2008, 47, 1871-1874; e) M. Wiesner, H. Wennemers, Synthesis,
2010, 9, 1568-1571; f) J. Duschmalé, H. Wennemers, Chem. Eur. J.
2012, 18, 1111-1120; g) J. Duschmale, S. Kohrt, H. Wennemers,
Chem. Comm. 2014, 50, 8109-8112; h) C. E. Grunenfelder, J. K.
Kisunzu, H. Wennemers, Angew. Chem. Int. Ed. 2016, 55, 8571-8574.
[4]
For pioneer works on chiral phosphoric acid for organocatalytic reaction,
see: a) D. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356-
5357; b) T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem. Int.
Ed. 2004, 43, 1566-1568; for selected general reviews for non-covalent
activation mode, see: c) J.-F. Brière, S. Oudeyer, V. Dalla, V. Levacher,
Chem. Soc. Rev. 2012, 41, 1696; d) M. Mahlau, B. List. Angew. Chem.
Int. Ed. 2013, 52, 518–533; e) K. Brak, E. N. Jacobsen. Angew. Chem.
Int. Ed. 2013, 52, 534–561; f) A. Zamfir, S. Schenker, M. Freund, S. B.
Tsogoeva, Org. Biomol. Chem. 2010, 8, 5262–5276; for selected
reviews on thiourea as H-bond donating catalyst, see: g) Z. Zhang, P.
R. Schreiner, Chem. Soc. Rev. 2009, 38, 1187–1198; h) M. S. Taylor,
E. N. Jacobsen, Angew. Chem. Int. Ed. 2006, 45, 1520–1543; i) M.
Terada, Bull. Chem. Soc. Jpn. 2010, 83, 101–119; j) S. Schenker, A.
Zamfir, M. Freund, S.B. Tsogoeva, Eur. J. Org. Chem. 2011, 2209–
2222; k) D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev.
2014, 114, 9047–9153.
[10] a) M. Wiesner, M. Neuburger, H. Wennemers, Chem. Eur. J. 2009, 15,
10103-10109; b) M. Wiesner, G. Upert, G. Angelici, H. Wennemers, J.
Am. Chem. Soc. 2010, 132, 6-7 ; c) F. Bächle, J. Duschmalé, C. Ebner,
A. Pfaltz, H. Wennemers, Angew. Chem. Int. Ed. 2013, 52, 12619–
12623.
[11] We define our modified amino-acid H-AA1-OMe bearing a phosphonic
acid as pAla for phosphonoalanine.
[5]
For selected exemples of asymmetric C-C bond creation by
organocatalysis, see: a) G. Masson, C. Housseman, J. Zhu, Angew.
Chem. Int. Ed. 2007, 46, 4614-4628; b) D. Enders, C. Grondal, M. R.
Huttl, Angew. Chem., Int. Ed. 2007, 46, 1570-1581; c) J. M. Verkade, L.
J. van Hemert, P. J. Quaedflieg, F. P. Rutjes, Chem. Soc. Rev. 2008,
37, 29-41; d) V. Terrasson, R. Marcia de Figueiredo, J. M. Campagne,
Eur. J. Org. Chem. 2010, 2635-2655; e) S. B. Tsogoeva, Eur. J. Org.
Chem. 2007, 1701-1716; f) A. Moyano, R. Rios, Chem. Rev. 2011, 111,
4703-4832; g) S. V. Pansare, E. K. Paul, Chem. Eur. J. 2011, 17, 8770-
[12] M. Cortes-Clerget, O. Gager, M. Monteil, J.-L. Pirat, E. Migianu-Griffoni,
J. Deschamp, M. Lecouvey, Adv. Synth. Catal. 2016, 358, 34–40.
[13] 11.5, 6.6 and 2.3 refer to the pH adjustment during the catalyst
preparation. 11.5 refer to the all-deprotonated catalyst while 6.6 refer to
the NH2+/OH/O- form and 2.3 refer to the all-protonated catalyst.
[14] The syntheses of Ia-d and IIa-d were reported in our previous work (ref
12). IIIa-d and IVa-d were synthesized starting from aspartic acid and
glutamic acid respectively according to the same strategy than Ia-d and
IIa-d. For more details, see supporting information.
This article is protected by copyright. All rights reserved.