A R T I C L E S
Dalton et al.
Scheme 1. [2 + 2 + 2] Cycloadditions with Alkynes and
Isocyanates
alkynyl isocyanate with an exogenous alkyne to form bicyclic
pyridones (Scheme 1, eq 3) and applied this methodology to
the synthesis of camptothecin.14 More recently, rhodium, cobalt,
nickel, and ruthenium have been shown to catalyze [2 + 2 +
2] cycloadditions of alkynes and isocyanates, forming pyri-
dones.15 Although useful for the synthesis of heterocycles, these
methods use two alkynes to form achiral cycloadducts. A notable
exception is Tanaka’s use of a chiral rhodium complex to access
pyridone atropisomers.16 It would be a clear benefit if an alkene
could be incorporated in place of one of the alkynes to form an
sp3 stereocenter in a reaction that could be rendered asymmetric.
Prior to our work, three component [2 + 2 + 2] cycloaddi-
tions between an isocyanate, alkene, and alkyne were un-
known.17 In 2006, we demonstrated that a rhodium(I)/tris(para-
methoxyphenyl)phosphine complex catalyzes the [2 + 2 + 2]
cycloaddition of 4-pentenyl isocyanate with symmetrical internal
alkynes (Scheme 1, eq 4).17a Our initial studies revealed that
dialkyl alkynes provide lactam 3 while diaryl alkynes favor
vinylogous amide 4, which arises from fragmentation of the
isocyanate moiety (Vide infra). To increase the utility of the
reaction, we expanded the substrate scope to readily available
terminal alkynes and rendered the transformation asymmetric
with chiral phosphoramidite ligands.17b A variety of structurally
and electronically different terminal alkynes and isocyanates
are tolerated, enabling the synthesis of a wide range of
indolizidines and quinolizidines. Herein, we disclose a full
description of the development of this reaction, the effects of
steric and electronic changes of the phosphoramidite ligand,
single X-ray crystal analysis of six previously unpublished
rhodium(cod)chloride/phosphoramidite complexes, and mecha-
nistic insight into the rhodium-catalyzed [2 + 2 + 2] cycload-
dition of terminal alkynes and alkenyl isocyanates.
catalyze the [2 + 2 + 2] cycloaddition of an isocyanate and
two equivalents of an alkyne to form 2-pyridone (Scheme 1,
eqs 1 and 2).13 Vollhardt later found that cobalt can couple an
Initial Ligand Screen. Our initial efforts to incorporate
terminal alkynes began with an examination of the conditions
that were effective for internal alkynes.17a We found that the
ligand tris(para-methoxyphenyl)phosphine provides less than
20% of 3a and 4a in a 1:1 ratio (Table 1, entry 1); the low
yield is due to the known dimerization of terminal alkynes (eq
(4) For tandem conjugate additions, see: (a) Back, T. G.; Nakajima, K. J.
Org. Chem. 1998, 63, 6566–6571. (b) Ma, D.; Zhu, W. Org. Lett.
2001, 3, 3927–3929. (c) Back, T. G.; Hamilton, M. D.; Lim, V. J. J.;
Parvez, M. J. Org. Chem. 2005, 70, 967–972. (d) Cai, G.; Zhu, W.;
Ma, D. Tetrahedron 2006, 62, 5697–5708.
(5) For cascade reactions, see: (a) Amorde, S. M.; Judd, A. S.; Martin,
S. F. Org. Lett. 2005, 7, 2031–2033. (b) Padwa, A.; Bur, S. K.
Tetrahedron 2007, 63, 5341–5378.
(6) For the use of dihydro-4-pyridones as synthons, see: (a) Joseph, S.;
Comins, D. L. Curr. Opin. Drug DiscoVery DeV. 2002, 5, 870. (b)
Young, D. W.; Comins, D. L. Org. Lett. 2005, 7, 5661–5664.
(7) For intramolecular Schmidt reaction, see: (a) Aube´, J.; Milligan, G. L.
J. Am. Chem. Soc. 1991, 113, 8965–8966. (b) Gracis, V.; Zeng, Y.;
Desai, P.; Aube´, J. Org. Lett. 2003, 5, 4999–5001.
(14) (a) Earl, R. A.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1983, 105,
6991–6993. (b) Earl, R. A.; Vollhardt, K. P. C. J. Org. Chem. 1984,
49, 4786–4800.
(15) Cobalt: (a) Diversi, P.; Ingrosso, G.; Lucherini, A.; Malquori, S. J.
Mol. Catal. 1987, 40, 267–280. (b) Bonaga, L. V. R.; Zhang, H.-C.;
Moretto, A. F.; Ye, H.; Gauthier, D. A.; Li, J.; Leo, G. C.; Maryanoff,
B. E. J. Am. Chem. Soc. 2005, 127, 3473–3485. Nickel: (c) Takahashi,
T.; Tsai, F.; Li, Y.; Wang, H.; Kondo, Y.; Yamanaka, M.; Nakajima,
K.; Kotora, M. J. Am. Chem. Soc. 2002, 124, 5059–5067. (d) Duong,
H. A.; Cross, M. J.; Louie, J. J. Am. Chem. Soc. 2004, 126, 11438–
11439. (e) Duong, H. A.; Louie, J. J. Organomet. Chem. 2005, 690,
5098–5104. (f) Duong, H. A.; Louie, J. Tetrahedron 2006, 62, 7552–
7559. Ruthenium: (g) Yamamoto, Y.; Takagishi, H.; Itoh, K. Org. Lett.
2001, 3, 2117–2119. (h) Yamamoto, Y.; Kinpara, K.; Saigoku, T.;
Takagishi, H.; Okuda, S.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc.
2005, 127, 605–613. Rhodium: (i) Flynn, S. T.; Hasso-Henderson,
S. E.; Parkins, A. W. J. Mol. Catal. 1985, 32, 101–105. (k) Kondo,
T.; Nomura, M.; Ura, Y.; Wada, K.; Mitsudo, T. Tetrahedron Lett.
2006, 47, 7107–7111.
(8) For a three component coupling using silyl dithianes, see: (a) Smith,
A. B., III; Kim, D.-S. Org. Lett. 2004, 6, 1493–1495. (b) Smith, A. B.,
III; Kim, D.-S. J. Org. Chem. 2006, 71, 2547–2557.
(9) For a catalytic, asymmetric aza-Diels-Alder reaction, see: (a) Garc´ıa-
Manchen˜o, O.; Go´mez-Arraya´s, R.; Carretero, J. C. J. Am. Chem. Soc.
2004, 126, 456–457. (b) Garc´ıa-Manchen˜o, O.; Go´mez-Arraya´s, R.;
Adrio, J.; Carretero, J. C. J. Org. Chem. 2007, 72, 10294–10297.
(10) For reviews on [2 + 2 + 2] cycloadditions of alkynes see: (a) Saito,
S.; Yamamoto, Y. Chem. ReV. 2000, 100, 2901–2915. (b) Agenet,
N.; Busine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria, M.
Org. React. 2007, 68, 1–302. (c) Galan, B. R.; Rovis, T. Angew. Chem.,
Int. Ed. 2009, 48, 2830–2834. For reviews on [2 + 2 + 2]
cycloadditions of alkynes and nitrogen moieties see: (d) Varela, J. A.;
Saa´, C. Chem. ReV. 2003, 103, 3787–3801. (e) Heller, B.; Hapke, M.
Chem. Soc. ReV. 2007, 36, 1085–1094. (f) Chopade, P. R.; Louie, J.
AdV. Synth. Catal. 2006, 348, 2307–2327.
(16) (a) Tanaka, K.; Wada, A.; Noguchi, K. Org. Lett. 2005, 7, 4737–
4739. (b) Tanaka, K. Synlett 2007, 1977–1993. (c) Tanaka, K.;
Takahashi, Y.; Suda, T.; Hirano, M. Synlett 2008, 1724–1728.
(17) (a) Yu, R. T.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2782–2783. (b)
Yu, R. T.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 12370–12371. (c)
Lee, E. E.; Rovis, T. Org. Lett. 2008, 10, 1231–1234. (d) Yu, R. T.;
Rovis, T. J. Am. Chem. Soc. 2008, 130, 3262–3263. (e) Yu, R. T.;
Lee, E. E.; Malik, G.; Rovis, T. Angew. Chem., Int. Ed. 2009, 48,
2379–2382. (f) Keller Friedman, R.; Rovis, T. J. Am. Chem. Soc. 2009,
131, 10775–10782.
(11) Ozaki, S. Chem. ReV. 1972, 72, 457–496.
(12) Braunstein, P.; Nobel, D. Chem. ReV. 1989, 89, 1927–1945.
(13) (a) Hong, P.; Yamazaki, H. Synthesis 1977, 1, 50–52. (b) Hong, H.;
Yamazaki, H. Tetrahedron Lett. 1977, 15, 1333–1336. (c) Hoberg,
H.; Oster, B. W. Synthesis 1982, 324–325. (d) Hoberg, H.; Oster, B. W.
J. Organomet. Chem. 1983, 234, C35–C38. (e) Hoberg, H.; Oster,
B. W. J. Organomet. Chem. 1983, 252, 359–364.
9
15718 J. AM. CHEM. SOC. VOL. 131, NO. 43, 2009