Communications
To prove that a spin transition is indeed responsible for
the increase of the cM T value above 200 K, data collection for
a structure analysis was carried out at 400 K. The results of
À
this structural investigation demonstrate that the axial Co
Namine bond lengths remain nearly the same, whereas the
À
À
equatorial Co Npy and Co O bond lengths significantly
À
increase with temperature. Thus, the averages of the Co
À
Npy and of the Co O bond lengths change from (1.931 Æ
0.001) ꢀ to (1.991 Æ 0.004) ꢀ and from (1.890 Æ 0.002) ꢀ to
À
(1.969 Æ 0.005) ꢀ, respectively. The observed Co Npy bond
lengths at 400 K indicate, too, that the spin transition is not
complete at this temperature.[11] The slightly decreased C O
À
bond lengths at 400 K are still in the range of those in
Figure 4. Variation of the product cM T with temperature for solid 2 at
an applied magnetic field of 0.5 T.
coordinated semiquinonate radicals, but an increasing asym-
[3c,9]
À
metry between both C O bonds is discernible.
In summary, magnetic as well as structural data unequiv-
ocally demonstrate that a temperature-induced spin-cross-
over process takes place in complex 2. Spin-crossover
complexes with cobalt(II) ions are still considered rare and
are generally only observed with strong-field ligands. Further,
to best of our knowledge, until now temperature-induced
changes of the spin state in cobalt dioxolene complexes have
all been linked to valence tautomerism. Therefore, complex 2
is the first known low-spin cobalt(II) semiquinonate complex
and also the first known cobalt dioxolene complex that
undergoes temperature-induced spin changes as a result of
spin crossover rather than valence tautomerism.
We attribute this finding to the special structural features
of the coordinated ligand L-N4tBu2. In combination with a
semiquinonate ligand, this macrocyclic ligand still exerts
sufficient ligand-field strength to enforce a low-spin state as
the ground state upon the cobalt(II) ion. Because of the steric
interactions between the tert-butyl substituents and the ligand
value for cM T of about 1.16 cm3 KmolÀ1. This value corre-
sponds to a species with a spin state of S = 1. Taking the
assignment of 2 as a low-spin cobalt(II) semiquinonate
complex as the basis for describing the electronic ground
state, one unpaired electron resides in the s-antibonding
dz2 orbital, the other unpaired electron occupies a p-molec-
ular orbital of the semiquinonate radical. Considering that
both orbitals are orthogonal to each other and based on
related complexes with copper(II) ions,[13] a strong ferromag-
netic exchange coupling between both spin carriers is
expected. The observance of a ground state of S = 1 is,
therefore, consistent with the interpretation of the structural
data at 100 K. Below 40 K, the cM T curve falls to a value of
0.15 cm3 KmolÀ1. This behavior can be attributed to zero-field
splitting and/or to very weak intermolecular antiferromag-
netic coupling within the crystal lattice. A similar decrease
was found in copper(II) semiquinonate complexes with the
same spin ground state.[13b] However, the most remarkable
finding is that, above 200 K, there is a steady increase of the
cM T curve to about 1.98 cm3 KmolÀ1 at 400 K. This finding
can only be attributed to a gradually occurring spin transition
from a low-spin to a high-spin cobalt(II) state. This spin-
crossover process is, however, not complete at 400 K. In
reported high-spin cobalt(II) semiquinonate complexes, the
exchange coupling between the S = 3/2 spin of the high-spin
cobalt(II) ion and the S = 1/2 spin of the semiquinonate
radical is generally described as antiferromagnetic, leading to
a spin ground state of S = 1 with a moderate coupling
constant.[3,14] Any fitting of the magnetic data to a theoretical
model is problematic because both the spin transition process
and the exchange coupling contribute to the values of the cM T
curve above 200 K, no data are available to us above 400 K
(the high-temperature limit of the SQUID magnetometer),
and the removal of degeneracy of the 4T1g state in a high-spin
octahedral cobalt(II) ion as a result of distortion of the ligand
field and spin–orbit coupling can complicate a magnetic
analysis even without the occurrence of spin crossover.[14] We
felt that any attempt to simulate the powder susceptibility
data including all those effects would suffer from severe
overparametrization. Hence, no unambiguous and reliable
values for the exchange coupling constant and the critical
spin-crossover temperature can be derived at this time.
À
at the two cis-oriented coordination sites, the axial Co Namine
bonds are considerably elongated. In a low-spin cobalt(III)
À
complex containing L-N4tBu2, the axial Co Namine bond
lengths were found to be approximately 2.09 ꢀ.[15] Thus,
CoIII Namine bonds are about 0.1 ꢀ longer in low-spin cobalt-
À
(III) complexes containing L-N4tBu2 than in those containing
L-N4Me2. In the low-spin cobalt(II) complex, the prevailing
À
Jahn–Teller effect favors the long axial Co Namine bonds,
which are also enforced by the macrocyclic ligand L-N4tBu2.
Upon oxidizing the cobalt(II) ion to a cobalt(III) ion, the
À
anticipated decrease of the Co Namine bond lengths results in
stronger steric interactions between the tert-butyl substituents
and the dioxolene ligand. All of these factors destabilize the
cobalt(III) state relative to the cobalt(II) state in complexes
that contain the macrocycle L-N4tBu2. Consequently, this
increase in the redox potential of the [Co(L-N4tBu2)]2+/3+
fragment relative to that of the coordinated dioxolene
ligand is responsible for the presence of the low-spin
cobalt(II) semiquinonate ground state in 2.
Received: July 10, 2009
Published online: December 22, 2009
Publication delayed at the authors request
Keywords: cobalt · magnetic properties · N ligands · O ligands ·
.
spin crossover
952
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2010, 49, 950 –953