SCHEME 4. A Plausible Mechanism for the Synthesis of
Isoquinolines
MS m/z ([M + H]+) 352; HRMS m/z calcd for (C21H21NO4 + Na)
374.1363; found 374.1370.
General Procedure for the Synthesis of Isoquinolines 5. To a
solution of PPh3 (0.5 mmol) in anhydrous toluene (10 mL) was added
dropwise a solution of 1 (0.5 mmol) and 4 (0.5 mmol) in anhydrous
toluene (10 mL) under the nitrogen atmosphere at 100 °C over 30
min. After the mixture was stirred for 2 h, the solvent was evaporated
in vacuum, and residual oil was purified by silica gel column
chromatography using hexane/EtOAc (8:1) as the eluent. The product
was rescrystallized from hexane/EtOAc (6:1).
Ethyl 7-chloro-1-(2-oxo-1-phenylbutyl)isoquinoline-3-carbox-
ylate (5a):. White solid, mp 136–137 °C; IR (KBr) 1716, 1705, 1423,
1241, 1232, 821, 707 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.46 (s,
1 H), 7.96 (s, 1 H), 7.90 (d, J ) 8.5 Hz, 1 H), 7.63 (d, J ) 8.4 Hz, 1
H), 7.33–7.25 (m, 5 H), 5.82 (s, 1 H), 4.50–4.43 (m, 2 H), 2.87–2.83
(m, 1 H), 2.48–2.43 (m, 1 H), 1.45 (t, J ) 7.2 Hz, 3 H), 1.15 (t, J )
7.1 Hz, 3 H) ppm; 13C NMR (125 MHz, CDCl3) δ 208.7, 165.7, 158.6,
141.1, 137.3, 135.8, 135.0, 132.0, 130.8, 129.5, 129.1, 127.9, 124.8,
123.1, 64.0, 61.9, 35.9, 14.5, 8.4 ppm; MS m/z ([M + Na]+) 404;
HRMS m/z calcd for (C22H20ClNO3 + Na) 404.1024; found 404.1021.
Ethyl 5-chloro-1-(2-oxo-1-phenylpropyl)isoquinoline-3-car-
boxylate (5b): Yellow solid, mp 123–124 °C; IR (KBr) 1709, 1670,
1358, 1240, 1213, 746 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.89 (s,
1 H), 7.92 (d, J ) 8.5 Hz, 1 H), 7.77 (d, J ) 7.5 Hz, 1 H), 7.50 (t, J
) 8.1 Hz, 1 H), 7.32–7.23 (m, 5 H), 5.86 (s, 1 H), 4.51–4.48 (m, 2
H), 2.37 (s, 3 H), 1.47 (t, J ) 7.1 Hz, 3 H) ppm; 13C NMR (125
MHz, CDCl3) δ 206.0, 165.6, 159.4, 141.8, 137.4, 134.8, 133.8, 130.9,
129.6, 129.5, 129.4, 129.1, 127.9, 124.5, 119.8, 65.1, 61.9, 29.8, 14.5
ppm; MS m/z ([M + Na]+) 390; HRMS m/z calcd for (C21H18ClNO3
+ Na) 390.0867; found 390.0861.
SCHEME 5. Reaction of Asymmetrical 2-Diazo-1,3-diones
Ethyl 7-methoxy-1-(3-oxobutan-2-yl)isoquinoline-3-carbox-
ylate (5p):. White solid, mp 115–116 °C; IR (KBr) 1713, 1699, 1623,
1313, 1228, 903 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.42 (s, 1 H),
7.89 (d, J ) 9 Hz, 1 H), 7.40 (dd, J ) 9, 2 Hz, 1 H), 7.35 (d, J ) 2
Hz, 1 H), 4.61 (q, J ) 7 Hz, 1 H), 4.52–4.48 (m, 2 H), 3.95 (s, 3 H),
2.06 (s, 3 H), 1.71 (d, J ) 7 Hz, 3 H), 1.47 (t, J ) 7 Hz, 3 H) ppm;
13C NMR (125 MHz, CDCl3) δ 209.0, 166.1, 160.7, 158.2, 139.6,
131.8, 130.8, 129.8, 123.8, 123.5, 103.3, 61.7, 55.9, 55.5, 28.0, 15.5,
14.6 ppm; MS m/z ([M + Na]+) 324; HRMS m/z calcd for (C17H19NO4
+ Na) 324.1206; found 324.1210.
Ethyl 1-(2-oxo-1-p-tolylpropyl)benzo[g]isoquinoline-3-carbox-
ylate (5q):. White solid, mp 129–130 °C; IR (KBr) 1743, 1707, 1257,
1213, 746 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.52 (d, J ) 8.5 Hz,
1 H), 8.49 (s, 1 H), 7.94–7.90 (m, 2 H), 7.76 (d, J ) 8.7 Hz, 1 H),
7.63–7.60 (m, 1 H), 7.54–7.51 (m, 1 H), 7.36 (d, J ) 7.7 Hz, 2 H),
7.21 (d, J ) 7.7 Hz, 2 H), 6.00 (s, 1 H), 4.51–4.47 (m, 2 H), 2.34 (s,
3 H), 2.22 (s, 3 H), 1.46 (t, J ) 7.1 Hz, 3 H) ppm; 13C NMR (125
MHz, CDCl3) δ 207.2, 165.7, 157.2, 141.8, 138.8, 137.6, 134.9, 134.4,
132.7, 130.1, 129.6, 129.4, 128.6, 128.1, 127.9, 127.7, 127.6, 126.4,
123.0, 68.0, 61.8, 30.2, 21.4, 14.5 ppm; MS m/z ([M + Na]+) 420;
HRMS m/z calcd for (C26H23NO3 + Na) 420.1570; found 420.1569.
Experiment Section
General Procedure for the Synthesis of Isoquinolines 3. To a
solution of PPh3 (0.131 g, 0.5 mmol) in anhydrous xylene (10 mL)
was added dropwise a solution of 1 (0.5 mmol) and 2 (0.5 mmol) in
anhydrous xylene (10 mL) at 140 °C under the nitrogen atmosphere
over 30 min. The mixture was stirred for 2 h. The solvent was
evaporated in vacuum, and the residual oil was purified by silica gel
column chromatography using hexane/EtOAc (4:1) as the eluent. The
product was recrystallized from hexane/EtOAc (4:1).
Ethyl 1-benzyl-7-methoxyisoquinoline-3-carboxylate (3a):
White solid, mp 117–118 °C; IR (KBr) 1724, 1617, 1498, 1408,
1229, 1205, 1028, 845 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.42
(s, 1 H), 7.82 (d, J ) 8.6 Hz, 1 H), 7.32–7.22 (m, 6 H), 7.17–7.16
(m, 1 H), 4.74 (s, 2 H), 4.53 (q, J ) 7.1 Hz, 2 H), 3.78 (s, 3 H),
1.48 (t, J ) 7.1 Hz, 3 H) ppm; 13C NMR (125 MHz, CDCl3) δ
167.6, 161.3, 160.3, 140.6, 140.5, 132.9, 131.6, 131.4, 130.0, 129.9,
127.7, 124.6, 124.5, 105.9, 63.0, 56.8, 44.5, 15.9 ppm; MS m/z
([M + H]+) 322; RMS m/z calcd for (C20H19NO3 + Na) 344.1257;
found 344.1267.
Acknowledgment. We thank the National Natural Science
Foundation of China (No. 20672093) and the Specialized Research
Fund for Doctoral Program of Higher Education (20050335101).
Ethyl 7-methoxy-1-(4-methoxybenzyl)isoquinoline-3-carbox-
ylate (3b):. White solid, mp 120–121 °C; IR (KBr) 1728, 1618,
1514, 1500, 1291, 1229, 1207, 1032, 850 cm-1; H NMR (500
1
MHz, CDCl3) δ 8.41 (s, 1 H), 7.82 (d, J ) 8.8 Hz, 1 H), 7.34–7.27
(m, 2 H), 7.19 (d, J ) 8.6 Hz, 2 H), 6.78 (d, J ) 8.6 Hz, 2 H),
4.67 (s, 2 H), 4.53 (q, J ) 7.1 Hz, 2 H), 3.80 (s, 3 H), 3.73 (s, 3
H), 1.48 (t, J ) 7.1 Hz, 3 H) ppm; 13C NMR (125 MHz, CDCl3)
δ 166.4, 160.1, 159.4, 158.2, 139.3, 131.7, 131.5, 130.4, 130.2,
129.7, 123.3, 123.2, 114.1, 104.7, 61.8, 55.6, 55.4, 42.3, 14.7 ppm;
Supporting Information Available: Detailed experimental
1
procedures, characterization data, copies of H and 13C NMR
spectra for all products. This material is available free of charge
JO8003259
(9) (a) Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. Z. J. Org.
Chem. 1990, 55, 1959–1964. (b) Ye, T.; Mckervey, M. A. Chem. ReV. 1994,
94, 1091–1160. (c) Regitz, C. J.; Hocker, J.; Liedhegener, A. Org. Synth. 1973,
5, 179. (d) Kirmse, W. Eur. J. Org. Chem. 2002, 2193–2256.
(10) (a) Staudinger, H.; Meyer, J. HelV. Chim. Acta 1919, 2, 635–646. (b)
Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; de los Santos, J. M.
Tetrahedron 2007, 63, 523–575.
(12) (a) Palacios, F.; Alonso, C.; Rubiales, G.; Villegas, M. Tetrahedron
2005, 61, 2779–2794. (b) Cossio, F.; Alonso, C.; Lecea, B.; Ayerbe, M.; Rubiales,
G.; Palacios, F. J. Org. Chem. 2006, 71, 2839–2847.
(13) Many azides have hazardous behavior and some of them are potential
energetic materials (See: Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.;
Mahulikar, P. P. J. Hazard. Mater. 2008, 151, 289–305). Although we did not
encounter any danger in our experiment, the caution about the potential hazardous
behavior of azides should be indicated.
(11) Wolff, L. Liebigs Ann. Chem. 1912, 394, 23.
3930 J. Org. Chem. Vol. 73, No. 10, 2008