Mendeleev Commun., 2009, 19, 320–321
above contact corresponds to bonding interaction – the critical
O(8)
O(1)
N(2)
N(3)
C(10)
point (3, –1) was located in the interatomic area. Based on the
Espinosa correlation scheme,15 the energy of this contact was found
to be 3.7 kcal mol–1. Therefore, the molecular structure of 6 is
mostly governed by intra- rather than intermolecular interactions.
Taking into account relatively high decomposition tempera-
ture of 6, this compound can represent a promising material
for potential applications in optoelectronics.16 Therefore, we
have estimated its molecular hyperpolarizability (b) at the same
level of sophistication as for geometry optimization, which was
shown to be accurate enough for calculation of molecular
nonlinear optical (NLO) properties.17,18 Hyperpolarizability of
6 was estimated by the finite field method as implemented in
the Gaussian program (keyword Polar=EnOnly) and presented
in a vectorial form according to the expression
C(23)
C(21)
C(11)
C(12)
C(13)
C(7)
C(9)
C(5)
N(6)
C(4)
C(22)
C(14)
C(15)
C(17)
C(16) N(18)
C(19)
N(20)
Figure 1 General view of 6 in representation of atoms by thermal
ellipsoids (p = 50%). Selected bond lengths (Å): O(1)–N(2) 1.375(2),
O(1)–C(5) 1.394(2), N(2)–N(3) 1.293(2), N(3)–C(4) 1.366(2), N(3)–C(21)
1.502(2), C(4)–C(5) 1.416(2), C(4)–C(15) 1.421(2), C(5)–N(6) 1.287(2),
N(6)–C(7) 1.391(2), C(7)–O(8) 1.221(2), C(7)–C(9) 1.498(2), C(15)–C(16)
1.352(2).
3
1
bvect
=
(bx2 + by2 + b2z), bj =
(bjii + biji + biij), i, j = x, y, z.
3 Σ
i = 1
contrast to acetylsydnone imine picrate11 and N-ethoxycarbonyl-
3-morpholinosydnone imine dihydrate,12 in which the trans
disposition of O(1) and O(8) atoms is observed. Such a mutual
disposition of the carbonyl group and mesoionic cycle leads to
the occurrence of the shortened contact O(1)···O(8) with the
interatomic separation of 2.629(1) Å.
The value of b is 934 a.u. and comparable to that of well-known
NLO-active compound dicyanovinylanisole (DIVA), which is
1245 a.u. obtained at the same level of theory.
Online Supplementary Materials
In addition to steric repulsion, the conformation of 6 can also
be a result of crystal packing effects. Indeed, in a crystal of 6,
one of the CN groups participates in the shortened so-called
N···π interactions with the mesoionic cycle (see Figure 2). The
interaction of this type, rather common for the mesoionic cycle,
was also observed in acetonitrile solvate of N6-acetyl-3-dimethyl-
amino-4-diphenylphosphinosidnonimine palladium dichloride.9
In order to analyze the nature of the above shortened con-
tact O(1)···O(7), we optimized the geometry of 6 at M052X/
6-311++G(d,p) level of theory using the Gaussian03 program.13
The geometry of the molecule in the crystal and the gas phase is
rather close. In particular, the torsion angle C(5)C(4)C(15)C(16)
equal to 29.1 and O(1)···O(8) interatomic distances (2.632 Å)
are almost the same. The topological analysis of the electron
density function [r(r)] with the Bader’s ‘Atom in Molecule’
theory14 in the isolated molecule of 6 has revealed that the
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2009.11.008.
References
1
2
C. G. Newton and C. A. Ramsden, Tetrahedron, 1982, 38, 2967.
V. G. Yashunskii and L. E. Kholodov, Usp. Khim., 1980, 49, 54 (Russ.
Chem. Rev., 1980, 49, 28).
3
4
5
6
7
J. R. Kavali and B. V. Badami, IL Farmaco, 2000, 55, 406.
E. Campaigne and S. W. Sohneller, Synthesis, 1976, 705.
F. Freeman, Chem. Rev., 1980, 80, 329.
M. H. Shin and M. Y. Yen, Tetrahedron, 2003, 59, 4103.
I. A. Cherepanov, N. V. Egorova, K. B. Martinovich and V. N. Kalinin,
Dokl. Akad. Nauk, 2000, 374, 64 (Dokl. Chem., 2000, 374, 175).
F. Dallacker and J. Kern, Chem. Ber., 1966, 99, 3830.
V. N. Kalinin, S. N. Lebedev, I. A. Cherepanov, I. A. Godovikov, K. A.
Lyssenko and E. Hey-Hawkins, Polyhedron, 2009, 28, 2411.
8
9
10 M. Yu. Antipin, T. A. Barr, B. H. Cardelino, R. D. Clark, C. E. Moore,
T. Myers, B. Penn, M. Romero, M. Sanghadasa and T. V. Timofeeva,
J. Phys. Chem. B, 1997, 101, 2770.
11 J. Jazwinski, O. Staszewska, J. W. Wiench, L. Stefaniak, S. Araki and
G. A. Webb, Magn. Reson. Chem., 2000, 38, 617.
12 F. Giordano, Gazz. Chim. Ital., 1988, 118, 501.
N(18A)
13 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz,
Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W.
Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople,
Gaussian 03, Revision E.01., Gaussian, Inc., Wallingford CT, 2004.
14 R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendron
Press, Oxford, 1990.
C(4)
N(6)
N(3)
C(5)
C(7)
O(1)
N(2)
O(8)
Figure 2 N···π interactions in the crystal of 6. The shortened contacts (Å):
N(18A)···O(1) 3.047(2), N(18A)···N(2) 3.121(2), N(18A)···N(2) 3.173(2),
N(18A)···C(4) 3.164(2), N(18A)···C(5) 3.069(2).
†
Crystallographic data: crystals of 6 (C16H13N5O2, M = 307.31) are
monoclinic, space group P21/n, at 100 K: a = 12.225(2), b = 8.9380(16)
and c = 14.159(2) Å, b = 103.565(4)°, V = 1504.0(4) Å3, Z = 4 (Z' = 1),
dcalc = 1.357 g cm–3, m(MoKα) = 0.94 cm–1, F(000) = 640. Intensities of
8874 reflections were measured with a Smart APEX II CCD diffractometer
[l(MoKα)=0.71072 Å, w-scans, 2q < 58°] and 3979 independent reflec-
tions (Rint = 0.0386) were used in further refinement. The structure was
solved by a direct method and refined by the full-matrix least-squares
technique against F2 in the anisotropic–isotropic approximation. Hydro-
gen atoms were located from the Fourier synthesis and refined in the
isotropic approximation. The refinement converged to wR2 = 0.0987 and
GOF = 1.001 for all independent reflections [R1 = 0.0452 was calculated
against F for 2828 observed reflections with I > 2s(I)]. All calculations
were performed using the SHELXTL PLUS 5.0.
15 E. Espinosa, I. Alkorta, I. Rozas, J. Elguero and E. Molins, Chem.
Phys. Lett., 2001, 336, 457.
16 K. Yu. Suponitsky, T. V. Timofeeva and M. Yu. Antipin, Usp. Khim.,
2006, 75, 515 (Russ. Chem. Rev., 2006, 75, 457).
17 K. Yu. Suponitsky, S. Tafur and A. E. Masunov, J. Chem. Phys., 2008,
129, 044109.
18 K. Yu. Suponitsky, Y. Liao and A. E. Masunov, J. Phys. Chem. A,
CCDC 752298 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge
For details, see ‘Notice to Authors’, Mendeleev Commun., Issue 1, 2009.
2009, DOI:10.1021/jp902293q.
Received: 8th June 2009; Com. 09/3346
– 321 –