3410 Inorganic Chemistry, Vol. 49, No. 7, 2010
Korobkov and Gambarotta
an “inverted-sandwich” structure was obtained by using
bulky amido ligands.6,7 Furthermore, bulky amido ligands
may be effectively used also for the purpose of obtaining
solvent-free compounds given that the presence of solvent in
the coordination sphere often leads to fragmentation pro-
cesses interfering with the reactivity of the metal center.9
This background prompted us to revisit the reduction
chemistry of uranium supported by the bis-silazanate anion.
This ligand has been successfully used by Andersen et al. in
his pioneering work in the chemistry of the tetravalent state.10
In the field of f-block element chemistry, it is known to afford
low coordinate complexes with excellent yields for several
metals.11 Low coordination numbers, the absence of coordi-
nated solvent molecules, and high solubility in hydrocarbons
and aromatic solvents in addition to high ligand basicity,
altogether, make these derivatives excellent precursors for
reactivity studies.1d,7b,11,12 A recurrent feature discovered so
far for this ligand system is its direct involvement in the
organometallics chemistry of the metal center (γ-metalation).
In the chemistry of uranium, products resulting from γ-
metalation were utilized for a variety of organometallic
transformations including nucleophilic behavior13 and inser-
tion reactions14 and for discovering examples of unusual
reactivity.14a,c Furthermore, the lability of the Si-N bond, in
combination with the availability of electronsprovidedby the
reduced state, allows formation of bridging or terminally
bonded imido groups6b,13a,14b,15 via elimination of one of the
two Me3Si residues.16 As far as the trivalent state is con-
cerned, U[N(SiMe3)2]3 is known but does not display unusual
reactivity. This behavior is certainly not typical for a U(III)
metal center which, when combined to N-donor atoms,
characteristically shows extreme reactivity.1b,c,3,4,17 On the
other hand, the large bulk generated by the three equatorial
ligands makes the metal inaccessible to reagents other than
protons.
In this work, we have studied the reduction chemistry of
tetravalent uranium silazanate derivatives aiming at explor-
ing the possibility of preparing lower-valent complexes for
reactivity purposes. As correctly observed by Andersen et al.,
we also observed that this chemistry is indeed dominated by
γ-metalation. Herein, we report how different extents of γ-
deprotonation may lead to cluster formation. It was also
observed that attempts to lower the oxidation state with
strong reductants resulted instead in reoxidation of the metal
center at the expense of the ligand possibly through dispro-
portionative pathways.
(9) See, for example: (a) Planalp, R. P.; Andersen, R. A. Organometallics
1983, 2, 1675. (b) Planalp, R. P.; Andersen, R. A.; Zalkin, A. Organometallics
1983, 2, 16. (c) Berno, P.; Minhas, R.; Hao, Sh.; Gambarotta, S. Organometallics
1994, 13, 1052. (d) Butcher, R. J.; Clark, D. L.; Grumbine, S. K.; Watkin, J .G.
Organometallics 1995, 14, 2799. (e) Putzer, M. A.; Magull, J.; Goesmann, H.;
Neumuller, B.; Dehnicke, K. Chem. Ber. 1996, 129, 1401. (f) Moore, M.;
Gambarotta, S.; Bensimon, C. Organometallics 1997, 16, 1086. (g) Cotton, S. A.
Coord. Chem. Rev. 1997, 160, 93 and references therein.(h) Galsworthy, J. R.;
Green, M. L. H.; Maxted, M.; Muller, M. Dalton Trans. 1998, 387. (i) Putzer, M.
A.; Neumuller, B.; Dehnicke, K. Z. Anorg. Allg. Chem. 1998, 624, 1087. (j) Karl,
M.; Harms, K.; Seybert, G.; Massa, W.; Fau, S.; Frenking, G.; Dehnicke, K. Z.
Anorg. Allg. Chem. 1999, 625, 2055. (k) Gilbert, A. T.; Davis, B. L.; Emge, T. J.;
Broene, R. D. Organometallics 1999, 18, 2125. (l) Messere, R.; Spirlet, M. -R.;
Jan, D.; Demonceau, A.; Noels, A. F. Eur. J. Inorg. Chem. 2000, 1151. (m) Qian,
Ch.; Nie, W.; Sun, J. Organometallics 2000, 19, 4134. (n) Trnka, T. M.; Bonanno,
J. B.; Bridgewater, B. M.; Parkin, G. Organometallics 2001, 20, 3255.
(o) Edelmann, F. T.; Freckmann, D. M. M.; Schumann, H. Chem. Rev. 2002,
102, 1851 and references therein. (p) Deacon, G. B.; Forsyth, C. M. Chem.
Commun. 2002, 2522. (q) Yu, X.; Bi, S.; Guzei, I. A.; Lin, Z.; Xue, Z.-L. Inorg.
Chem. 2004, 43, 7111. (r) Deacon, G. B.; Forsyth, C. M.; Junk, P. C. Eur. J.
Inorg. Chem. 2005, 817. (s) Wang, J.; Gardiner, M. G. Chem. Commun. 2005,
1589. (t) Niemeyer, M. Inorg. Chem. 2006, 45, 9085. (u) Evans, W. J.; Rego,
D. B.; Ziller, J. W. Inorg. Chem. 2006, 45, 3437. (v) Scarel, G.; Wiemer, C.;
Fanciulli, M.; Fedushkin, I. L.; Fukin, G. K.; Domrachev, G. A.; Lebedinskii, Y.;
Zenkevich, A.; Pavia, G. Z. Anorg. Allg. Chem. 2007, 633, 2097.
Experimental Section
(10) Simpson, S. J.; Turner, H. W.; Andersen, R. A. J. Am. Chem. Soc.
1979, 101, 7728.
All operations were performed under a nitrogen atmo-
sphere with rigorous exclusion of oxygen and water using
standard Schlenk and glovebox techniques. Hexane and
toluenesolventswerepurifiedbypassing through Al2O3 filled
columns and deoxygenated prior to use by several vacuum/
nitrogen purges. DME was dried over LiAlH4 and distilled
under N2 prior to utilization. Benzene-d6 was obtained from
“C/D/N isotopes”, dried over Na/K alloy, distilled, and
stored over molecular sieves (4A). n-Butyl-lithium solution
(2.5 M) in hexane and methyl-litium solution (1.6 M) in
diethyl ether were purchased from Aldrich and used as re-
ceived. LiCH2(SiMe3) was prepared according to a modified
literature procedure18 using boiling cyclohexane as a solvent.
(11) (a) Bradley, D. C.; Ghotra, J. S.; Hart, F. A. Dalton Trans. 1973,
1021. (b) Bradley, D. C.; Ahmed, M. Polyhedron 1983, 2, 87. (c) Ghotra, J. S.;
Hursthouse, M. D.; Welch, A. J. Chem. Commun. 1973, 669. (d) Andersen, R. A.;
Templeton, D. H.; Zalkin, A. Inorg. Chem. 1978, 17, 2317.
(12) Bradley, D. C.; Ghotra, J. S.; Hart, F. A.; Hursthouse, M. B.;
Raithby, P. R. Dalton Trans. 1977, 1166.
(13) (a) Dormond, A.; Aaliti, A.; Moise, C. Tetrahedron Lett. 1986, 27,
1497. (b) Dormond, A.; Aaliti, A.; Elbouadili, A.; Moise, C. Inorg. Chim. Acta
1987, 139, 171. (c) Dormond, A.; Aaliti, A.; Moise, C. J. Org. Chem. 1988, 53,
1034.
(14) (a) Simpson, S. J.; Andersen, R. A. J. Am. Chem. Soc. 1981, 103,
4063. (b) Dormond, A.; Elbouadili, A.; Moise, C. J. Org. Chem. 1987, 52, 688.
(c) Dormond, A.; Aaliti, A.; Moise, C. J. Organomet. Chem. 1987, 329, 187.
(d) Dormond, A.; Elbouadili, A.; Moise, C. J. Org. Chem. 1989, 54, 3747.
(15) For examples, see: (a) Colquhoun, H. M.; Crease, A. E.; Taylor,
S. A.; Williams, D. J. Dalton Trans. 1988, 2781. (b) Feng, S. G.; White, P. S.;
Templeton, J. L. J. Am. Chem. Soc. 1994, 116, 8613. (c) Lefeber, C.; Arndt, P.;
Tillack, A.; Baumann, W.; Kempe, R.; Burlakov, V. V.; Rosenthal, U. Organo-
metallics 1995, 14, 3090. (d) Zippel, T.; Arndt, P.; Ohff, A.; Spannenberg, A.;
Kempe, R.; Rosenthal, U. Organometallics 1998, 17, 4429. (e) Armstrong, D. R.;
Henderson, K. W.; Little, I.; Jenny, C.; Kennedy, A. R.; McKeown, A. E.; Mulvey,
R. E. Organometallics 2000, 19, 4369. (f) Kukushkin, V. Y.; Pombeiro, A. J. L.
Chem. Rev. 2002, 102, 1771 and references therein.(g) Kiplinger, J. L.; Morris,
D. E.; Scott, B. L.; Burns, C. J. Organometallics 2002, 21, 3073. (h) Hou, Z.;
Yoda, C.; Koizumi, T.; Nishiura, M.; Wakatsuki, Y.; Fukuzawa, S.; Takats, J.
Organometallics 2003, 22, 3586 and references therein.(i) Tsai, Y. C.; Stevens, F.
H.; Meyer, K.; Mendiratta, A.; Gheorghiu, M. D.; Cummins, C. C. Organome-
tallics 2003, 22, 2902. (j) Gardner, B. M.; McMaster, J.; Lewis, W.; Blake, A. J.;
Liddle, S. T. J. Am. Chem. Soc. 2009, 131, 10388. (k) Simpson, S. J.; Turner, H.
W.; Andersen, R. A. Inorg. Chem. 1981, 20 (9), 2991. (l) Boaretto, R.; Roussel,
P.; Kingsley, A. J.; Munslow, I. J.; Sanders, C. J.; Alcock, N. W.; Scott, P. Chem.
Commun. 1999, 1701. (m) Boaretto, R.; Roussel, P.; Alcock, N. W.; Kingsley,
A. J.; Munslow, I. J.; Sanders, C. J.; Scott, P. J. Organomet. Chem. 1999, 591,
174.
(16) See, for example: (a) Evans, W. J.; Rego, D. B.; Ziller, J. W. Inorg.
Chim. Acta 2007, 360, 1349. (b) Ovchinnikov, Yu. E.; Ustinov, M. V.; Igonin, V.
A.; Struchkov, Yu. T.; Kalikhman, I. D.; Voronkov, M. G. J. Organomet. Chem.
1993, 461, 75. (c) Bradley, D. C.; Hursthouse, M. B.; Howes, A. J.; Jelfs, A. N. M.;
Runnacles, J. D.; Thornton-Pett, M. Dalton Trans. 1991, 841. (d) Zalkin, A.;
Brennan, J. G.; Andersen, R. A. Acta Crystallogr., Sect. C 1988, C44, 1553.
(e) Antinolo, A.; Otero, A.; Urbanos, F.; Garcia-Blanco, S.; Martinez-Carrera, S.;
Sanz-Aparicio, J. J. Organomet. Chem. 1988, 350, 25.
(17) For additional examples of U(III) reactivity, see: (a) Roussel, P.;
Boaretto, R.; Kingsley, A. J.; Alcock, N. W.; Scott, P. Dalton Trans. 2002,
1423. (b) Evans, W. J.; Kozimor, S. A.; Nyce, G. W.; Ziller, J. W. J. Am. Chem.
Soc. 2003, 125, 13831. (c) Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Chem.
Commun. 2005, 4681. (d) Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Science
2005, 309, 1835. (e) Evans, W. J.; Miller, K. A.; Kozimor, S. A.; Ziller, J. W.;
DiPasquale, A. G.; Rheingold, A. L. Organometallics 2007, 26, 3568.
(f) Minasian, S. G.; Krinsky, J. L.; Williams, V. A.; Arnold, J. J. Am. Chem.
Soc. 2008, 130, 10086. (g) Lam, O. P.; Feng, P. L.; Heinemann, F. W.; O'Connor,
J. M.; Meyer, K. J. Am. Chem. Soc. 2008, 130, 2806.