N. Modutlwa et al.
of trimethoprim by the H–D exchange reaction in heated
1 M DCl,39 while multi-step syntheses through deuterated
3,4,5-trimethoxybenzaldehyde were adopted for the preparation
of [2H3]trimethoprim and [2H6]trimethoprim.43, 44
[6] M. Wenzel, J. Label. Compd. Radiopharm. 1989, 27,
1143–1155.
[7] M. T. Baker, W. C. Jr Ronnenberg, J. A. Ruzicka,
C. K. Chiang, J. H. Tinker, Drug Metab. Dispos. 1993, 21,
1170–1171.
When 10% Pd/C and 5% Pt/C (each 10% of substrate weight)
were simultaneously used for the deuteration of trimethoprim
(0.5 mmol) at room temperature with D2O (1 mL) and hydrogen
gas, the deuterium atoms were poorly incorporated (Table 5,
Entry 1). The deuterium efficiency on the pyrimidine nucleus
was improved to 94% by raising the temperature to 1601C and
the amounts of D2O and 5% Pt/C to 2 mL and 20 wt%,
respectively (Entry 2). The ease of the H–D exchange of the
pyrimidine hydrogen would be rationally explained by the
directing effect of the adjacent ring nitrogen atom; the active
palladium metal could be readily located near the C–H bond of
the pyrimidine ring by the coordination with the lone pair of the
neighboring ring nitrogen.20 Further increase in the D2O and
10% Pd/C quantity to 3 mL and 20 wt%, respectively, led to a
significant deuterium incorporation at the benzylic position
(Entry 3). Two hydrogen atoms on the benzene rings were
finally replaced with deuterium atoms with a high efficiency
(92%) by the extension of the reaction time to 34 h, although
the extent of deuteration on the methoxy group was only
slightly improved (Entry 4). The low deuterium incorporation of
the methoxy group was identical to that of the alkyl groups of
the alkoxyarenes previously reported by us.45 The deuterated
trimethoprim might be valuable to investigate the binding
with DHFR because the location of its deuterium atoms is
different from that of the previously reported deuterated
trimethoprims.
[8] D. J. Kushner, A. Baker, T. G. Dunstall, Can. J. Physiol. Pharmacol.
1999, 77, 79–88.
[9] A. D. Jones, R. E. Zelle, I. R. Silverman, Chem. Abstr. 2009, 150,
329781. WO 2009/03652, 2009.
[10] S. L. Harbeson, R. D. Tung, Chem. Abstr. 2009, 150, 56539. WO
2008/156632, 2008.
[11] T. G. Gant, S. Sarshar, S. H. Woo, Chem. Abstr. 2008, 149, 402045.
U.S. Patent 234257, 2008;
[12] I. A. Davidova, L. M. Gieg, M. Nanny, K. G. Kropp, J. M. Suflita, Appl.
Environ. Microb. 2005, 71, 8174–8182.
[13] E. Ueno, H. Oshima, I. Saito, H. Matsumoto, Y. Yoshimura,
H. Nakazawa, J. AOAC Int. 2004, 87, 1003–1015.
[14] M. Barreda, F. J. Lopez, M. Villarroya, J. Beltran, J. M. Garcia-
Baudin, F. Hernandez, J. AOAC Int. 2006, 89, 1080–1087.
[15] T. Otake, N. Itoh, Y. Aoyagi, M. Matsuo, N. Hanari, S. Otsuka,
T. Yarita, J. Agric. Food Chem. 2009, 57, 8208–8212.
[16] T. Junk, W. J. Catallo, Tetrahedron Lett. 1996, 37, 3445–3448;
b) T. Junk, W. T. Catallo, L. D. Civilis, J. Label. Compd. Radiopharm.
1997, 39, 625–630; c) T. Junk, W. J. Catallo, J. Elguero, Tetrahedron
Lett. 1997, 38, 6309–6312.
[17] J. L. Garnett, W. A. Sollich, Aust. J. Chem. 1961, 14, 441–448;
b) M. Maeda, O. Ogawa, Y. Kawazoe, Tetrahedron Lett. 1975, 19,
1643–1646.
[18] S. B. Hawthorne, D. J. Miller, T. R. Aulich, Z. Fresenius, Anal. Chem.
1989, 334, 421–426.
[19] J. L. Gannet, R. J. Hodges, J. Am. Chem. Soc. 1967, 89,
4546–4547; b) M. S. Eisen, T. J. Marks, Organometallics 1992, 11,
3939–3941.
[20] H. Esaki, N. Ito, S. Sakai, T. Maegawa, Y. Monguchi, H. Sajiki,
Tetrahedron 2006, 62, 10954–10961.
[21] N. Ito, H. Esaki, T. Maesawa, E. Imamiya, T. Maegawa, H. Sajiki, Bull.
Chem. Soc. Jpn. 2008, 81, 278–286.
[22] H. Sajiki, N. Ito, H. Esaki, T. Maesawa, T. Maegawa, K. Hirota,
Tetrahedron Lett. 2005, 46, 6995–6998.
[23] N. Ito, T. Watahiki, T. Maesawa, T. Maegawa, H. Sajiki, Synthesis
2008, 9, 1467–1478.
Conclusion
We have successfully deuterated xanthines, valpromide, pheny-
toin, and trimethoprim using the heterogeneous Pd/C-, Pt/C-,
or/and Rh/C-catalyzed H–D exchange reactions in the presence
of D2O and H2. One of the most distinctive features of these
methods is their simplicity; no multi-step reaction was required
to access the deuterium-labelled drugs. The protocol for the
H–D exchange reactions could be practical for the preparation
of deuterated analogs with improved biological activities over
the parent drugs, as well as providing standard materials for
quantitative analyses.
[24] M. B. Skaddan, C. M. Yung, R. G. Bergman, Org. Lett. 2004, 6,
11–13.
[25] J. J. Barone, H. Roberts,
Recent Research (Ed.:
pp. 59–73.
in Caffeine: Perspectives from
P.B. Dews), Springer, Berlin, 1984,
[26] F. Balssa, Y. Bonnaire, J. Label. Compd. Radiopharm. 2007, 50,
33–41.
[27] N-Methyl peaks in the 1H NMR spectra of theophylline and
caffeine were assigned by two groups. b) T. G. Alexander,
M. Maienthal, J. Pharm. Sci. 1964, 53, 962–963; c) R. Ottinger,
G. Boulvin, J. R. et G. Chiurdoglu, Tetrahedron 1965, 21,
3435–3440.
[28] The H–D exchange reaction at the 8-position of purine
derivatives, such as hypoxanthine, inosine, adenine, adenosine,
and 6-chloropurine, by heating in D2O at 1001C in the absence of
catalysts was reported. b) F. J. Bullock, O. Jardetzky, J. Org. Chem.
1964, 29, 1988–1990; c) J. R. Jones, S. F. Taylor, Chem. Soc. Rev.
1981, 10, 329–344.
Acknowledgement
We sincerely thank the N.E. Chemcat Corporation for the kind
gifts of the catalysts.
[29] E. Perucca, Epilepsia 2005, 46(Suppl. 4), 31–37.
[30] J. G. Hardman, L. E. Limbird, Goodman and Gilman’s the
Pharmacological Basis of Therapeutics, 10th ed., McGraw-Hill,
New York, 2001.
References
[31] Y. Kasuya, K. Mamada, S. Baba, M. Matsukura, J. Pharm. Sci. 1985,
74, 503–507.
[32] M. Bialer, A. Rubinstein, J. Dubrovsky, I. Raz, O. Abramsky, Int. J.
Pharm. 1985, 23, 25–33.
[33] D. L. Casey, P. R. Gwilt, D. A. Digenis, D. G. Perrier, J. Label. Compd.
Radiopharm. 1977, 13, 623–625.
[1] C. Elison, H. Rapoport, R. Laursen, H. W. Elliott, Science 1961, 134,
1078–1079.
[2] W. N. Cleland, M. H. O’Leary, D. D. Northrop, Isotope Effects on
Enzyme-Catalyzed Reactions, University Park Press, Baltimore,
1976, p. 303.
[34] S. Baba, T. Goromaru, K. Yamazaki, Y. Kasuya, J. Pharm. Sci. 1980,
69, 1300–1306.
[3] J. R. Gillette, J. F. Darbyshire, Y. Sugiyama, Biochemistry 1994, 33,
2927–2937.
[4] A. R. Klein, V. M. Fernandez, R. K. Thauer, FEBS Lett. 1995, 368,
203–206.
[5] M. A. Vanoni, K. K. Wong, D. P. Ballou, J. S. Blanchard, Biochemistry
1990, 29, 5790–5796.
[35] T. Maegawa, Y. Fujiwara, Y. Inagaki, H. Esaki, Y. Monguchi,
H. Sajiki, Angew. Chem. Int. Ed. 2008, 47, 5394–5397.
[36] N. Ito, T. Watahiki, T. Maesawa, T. Maegawa, H. Sajiki, Adv. Synth.
Catal. 2006, 348, 1025–1028.
J. Label Compd. Radiopharm 2010, 53 686–692
Copyright r 2010 John Wiley & Sons, Ltd.