A Domino N-Amidoacylation/Aldol-Type
Condensation Approach to the Synthesis of the
Topo-I Inhibitor Rosettacin and Derivatives†
Fre´de´ric Pin,‡ Se´bastien Comesse,‡ Morgane Sanselme,§ and
Adam Da¨ıch*,‡
URCOM, EA 3221, UFR des Sciences & Techniques, UniVersite´
du HaVre, 25 rue Philippe Lebon, BP: 540, F-76058
Le HaVre Cedex, France, and UPRES-EA 3233-IRCOF,
UniVersity of Rouen, 1 rue Tesnie`re F-76821,
Mont-Saint-Aignan Cedex, France
FIGURE 1. Camptothecins 1a-c and aromathecins 2a,b,g.
respectively.3 Other derivatives are in preclinical development
or clinical trial as exemplified by exatecan, 9-nitrocamptothecin,
and BAY 38-3441.4,5 Because CPTs have some limitations,6,7
non-camptothecin topoisomerase-I (topo-I) inhibitors such as
aromathecins 2a,b,g (Figure 1) are being pursued for therapeutic
development. This is exemplified by 22-hydroxyacuminatine
(2a) as a novel and rare quinoline alkaloid isolated along with
CPT from C. accuminata in very low yield (0.000006%).8 In
spite of its significant cytotoxicity against the murine leukaemia
P-388 and KB cell lines in vitro,9 only four total syntheses have
been achieved (Scheme 1). By analogy to the synthesis of CPT,10
product 2a was obtained by strategies based on intramolecular
Heck ring closure of I (7 steps),11 aza Diels-Alder of II (8
steps)12 and the coupling of 3-cyanophthalide derivatives and
pyrroloquinoline III (7 steps).13 In a parallel and recent
contribution, Greene et al.14 have illustrated a modular approach
to camptothecinoids from the Padwa hydroxypyridone15 that
involves successively a Claisen rearrangement, a Heck coupling,
and a classical Friedla¨nder condensation in an ultimate stage
(7 steps).
adam.daich@uniV-lehaVre.fr
ReceiVed NoVember 7, 2007
The pot, atom, and step-economic synthesis of Rosettacin
topo-I poison and its derivatives has been achieved using a
novel domino N-amidoacylation/aldol-type condensation,
followed by decarboxylation of the ester function. The key
domino procedure simply involves mixing HOBt ester as
new reagent with lactam and NaH together in THF or THF/
DMF. The reaction seems to be general and led to suitable
N-heterocyclic products in moderate to good yields.
Most importantly, rosettacins 2b,g belonging to the aromath-
ecin family are scarce and have been used16,17 as CPT/
(3) (a) Garcia-Carbonero, R.; Supko, J. G. Clin. Cancer Res. 2002, 8,
641-661. (b) Meng, L.-H.; Liao, Z.-H.; Pommier, Y. Curr. Top. Med. Chem.
2003, 3, 305-320.
(4) Pizzolato, J. F.; Saltz, L. B. Lancet 2003, 361, 2235-2242.
(5) Thomas, C. J.; Rahier, N. J.; Hecht, S. M. Bioorg. Med. Chem. 2004,
12, 1585-1604.
Camptothecin (CPT) and aromathecin alkaloids are a family
of natural products containing an indolizino[1,2-b]quinolin-
9(11H)-one nucleus fused to diverse hetero- and carbocyclic
rings at the C7- and C8-positions. Among them, 20(S)-camp-
tothecin (CPT, 1a, Figure 1), first isolated from the Chinese
tree Camptotheca accuminata in 1966 by Wall et al.,1 still serves
as a very attractive lead structure for the development of new
and potent anticancer drugs due to its antiproliferative activity.2
Two compounds in this class (Figure 1), topotecan (1b) and
irinotecan (1c), have been used clinically in the United States
for advanced ovarian and lung cancers and for colon carcinomas,
(6) Burke, T. G.; Mi, Z. M. J. Med. Chem. 1994, 37, 40-46.
(7) (a) Brangi, M.; Litman, T.; Ciotti, M.; Nishiyama, K.; Kohlhagen,
G.; Takimoto, C.; Robey, R.; Pommier, Y.; Fojo, T.; Bates, S. E. Cancer
Res. 1999, 59, 5938-5946.
(8) Marchand, C.; Antony, S.; Kohn, K. W.; Cushman, M.; Ioanoviciu,
A.; Staker, B. L.; Burgin, A. B.; Stewart, L.; Pommier, Y. Mol. Cancer
Ther. 2006, 5, 287-295 and references therein.
(9) Lin, L. Z.; Cordell, G. A. Phytochemistry 1989, 28, 1295-1297.
(10) Li, Q.-Y.; Zu, Y.-G.; Shi, R.-Z.; Yao, L.-P. Curr. Med. Chem. 2006,
13, 2021-2039.
(11) (a) Ma, Z.; Lee, D. Y. W. Tetrahedron Lett. 2004, 45, 6721-6723.
(b) Comins, D. L.; Baevsky, M. F.; Hong, H. J. Am. Chem. Soc. 1992,
114, 10971-10972. (c) Comins, D. L.; Nolan, J. M. Org. Lett. 2001, 3,
4255-4257.
(12) Zhou, H.-B.; Liu, G.-S.; Yao, Z.-J. J. Org. Chem. 2007, 72, 6270-
6272.
† Dedicated to our colleague, Prof. B. Decroix, upon his retirement.
‡ Universite´ du Havre.
(13) Xiao, X.; Antony, S.; Pommier, Y.; Cushman, M. J. Med. Chem.
2006, 49, 1408-1412.
§ University of Rouen.
(1) Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail, A.
T.; G. A. Sim, J. Am. Chem. Soc. 1966, 88, 3888-3890.
(2) (a) Wall, M. E. In Chronicles of Drug DiscoVery; Lednicer, D., Ed.;
American Chemical Society: Washington D.C., 1993; Vol. 3, p 327. (b)
Neoptolemos, J. P.; Cunningham, D.; Friess, H.; Bassi, C.; Stocken, D. D.;
Tait, D. M.; Dunn, J. A.; Dervenis, C.; Lacaine, F.; Hickey, H.; Raraty, M.
G. T.; Ghaneh, P.; Bu¨chler, M. W. Ann. Oncol. 2003, 14, 675-692.
(14) Babjak, M.; Kanazawa, A.; Anderson, R. J.; Greene, A. E. Org.
Biomol. Chem. 2006, 4, 407-409.
(15) Padwa, A.; Sheehan, S. M.; Straub, C. S. J. Org. Chem. 1999, 64,
8648-8659.
(16) Fox, B. M.; Xiao, X.; Antony, S.; Kohlhagen, G.; Pommier, Y.;
Staker, B. L.; Stewart, L.; Cushman, M. J. Med. Chem. 2003, 46, 3275-
3282.
10.1021/jo702387q CCC: $40.75 © 2008 American Chemical Society
Published on Web 02/07/2008
J. Org. Chem. 2008, 73, 1975-1978
1975