C O M M U N I C A T I O N S
of benzene as solvent for this transformation reduced the overall
rate of hexacycle (+)-28 formation and allowed for the isolation
of N-chloro pentacycle 30.28 Importantly, dissolution of N-chloro
pentacycle 30 in acetonitrile for 12 h did not result in formation of
any hexacycle (+)-28 and completely returned 30.29,30 Additionally,
when the deuterium incorporation studies described above were
conducted with 30, there was no evidence for formation of the
corresponding dienol, suggesting the nitrogen of 30 is not basic
enough to enable deprotonation at C9. Interestingly, exposure of
aminoketoester (-)-3 to samples of N-chloro pentacycle 30 in
acetonitrile resulted in formation of hexacycle (+)-28 and (-)-
3.31 This result is consistent with an intermolecular N to C halogen
transfer from N-chloro pentacycle 30 to aminoketoester (-)-3 (likely
via 27). A plausible mechanism for conversion of aminoketoester
(-)-3 to spirofused hexacycle (+)-28 is halogenation of the dienol
27 to give R-chloroester 31,32 followed by intramolecular allylic
displacement by the amine. Significantly, this mechanism is
consistent with our proposed biomimetic hypothesis for the
advanced stage oxidative spirocyclization of aminoketoester (-)-
3.3b
References
(1) (a) Binns, S. V.; Dustan, P. J.; Guise, G. B.; Holder, G. M.; Hollis, A. F.;
McCredie, R. S.; Pinhey, J. T.; Prager, R. H.; Rasmussen, M.; Ritchie, E.;
Taylor, W. C. Aust. J. Chem. 1965, 18, 569. (b) Guise, G. B.; Mander,
L. N.; Prager, R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aust.
J. Chem. 1967, 20, 1029. (c) Mander, L. N.; Prager, R. H.; Rasmussen,
M.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1967, 20, 1473. (d) Mander,
L. N.; Prager, R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aust.
J. Chem. 1967, 20, 1705.
(2) For SCH-530348, a galbulimima alkaloid derived antiplatelet agent, in
phase-III clinical trials for acute coronary syndrome, see: (a) Chackala-
mannil, S.; Wang, Y.; Greenlee, W. J.; Hu, Z.; Xia, Y.; Ahn, H.-S.; Boykow,
G.; Hsieh, Y.; Palamanda, J.; Agans-Fantuzzi, J.; Kurowski, S.; Graziano,
M.; Chintala, M. J. Med. Chem. 2008, 51, 3061. (b) Malaska, M. J.; Fauq,
A. H.; Kozikowski, A. P.; Aagaard, P. J.; McKinney, M. Bioorg. Med.
Chem. Lett. 1995, 5, 61.
(3) (a) Movassaghi, M.; Hunt, D. K.; Tjandra, M. J. Am. Chem. Soc. 2006,
128, 8126. (b) Please see Supporting Information of ref 3a (page S4, Scheme
S2) for a detailed unified biosynthetic hypothesis for class II and III
galbulimima alkaloids.
(4) (a) The direct stereochemical and structural relationship between (-)-
galbulimima alkaloid 13 (class III) and (-)-himandrine (1, class II) was
established through instructive chemical degradation studies in the context
of the isolation work (ref 1c). For revision of the stereochemical assignment
based on new X-ray analysis, see: (b) Willis, A. C.; O’Connor, P. D.; Taylor,
W. C.; Mander, L. N. Aust. J. Chem. 2006, 59, 629.
(5) For prior syntheses of class I galbulimima alkaloids, see: (a) Hart, D. J.;
Wu, W.-L.; Kozikowski, A. P. J. Am. Chem. Soc. 1995, 117, 9369. (b)
Chackalamannil, S.; Davies, R. J.; Aserom, T.; Doller, D.; Leone, D. J. Am.
Chem. Soc. 1996, 118, 9812. (c) Tchabanenko, K.; Adlington, R. M.;
Cowley, A. R.; Baldwin, J. E. Org. Lett. 2005, 7, 585.
(6) For prior syntheses of class III galbulimima alkaloids, see: (a) Mander,
L. N.; McLachlan, M. M. J. Am. Chem. Soc. 2003, 125, 2400. (b) Shah,
U.; Chackalamannil, S.; Ganguly, A. K.; Chelliah, M.; Kolotuchin, S.;
Bulevich, A.; McPhail, A. J. Am. Chem. Soc. 2006, 128, 12654. (c) Evans,
D. A.; Adams, D. J. J. Am. Chem. Soc. 2007, 129, 1048.
Scheme 4. Key Observations Relevant to N-C9 Bond Formation
(7) For an intriguing synthesis of the skeleton of 1, see: O’Connor, P. D.;
Mander, L. N.; McLachlan, M. M. W. Org. Lett. 2004, 6, 703.
(8) Movassaghi, M.; Chen, B. Angew. Chem., Int. Ed. 2007, 46, 565.
(9) Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2003, 125, 10808.
(10) See Supporting Information for details.
(11) Diol (-)-6 is prepared in three steps from commercially available 7-octene-
1,2-diol on greater than 8-g scale.
(12) Meerwein, H. Methoden Org. Chem. (Houben-Weyl) 1965, 6, 325.
(13) Parikh, J. P.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 5505.
(14) (a) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem. Soc.
1985, 107, 972. (b) For rate enhancement with TlOH, see: Uenishi, J.-i.;
Beau, J.-M.; Armstrong, R. W.; Kishi, Y. J. Am. Chem. Soc. 1987, 109,
4756. (c) Roush, W. R.; Moriarty, K. J.; Brown, B. B. Tetrahedron Lett.
1990, 31, 6509. (d) Evans, D. A.; Starr, J. T. J. Am. Chem. Soc. 2003, 125,
13531.
(15) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5,
3667.
(16) (a) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem.
Soc. 2000, 122, 3783. (b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.;
Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
(17) Mukaiyama, T.; Marasaka, K.; Banno, K. Chem. Lett. 1973, 1011.
(18) Martin, J. C.; Arhart, R. J. J. Am. Chem. Soc. 1971, 93, 4327.
(19) The more forcing reaction conditions needed for hydrolysis of an N-vinyl
oxazolidinone (ref 3) derivative of 20 led to competing ꢀ-elimination of
the C14-methyl ether.
(20) (a) Liu, H. J.; Tran, D. D. P. Tetrahedron Lett. 1999, 40, 3827. (b) Walker,
D.; Hiebert, J. D. Chem. ReV. 1967, 67, 153.
We have described the first total synthesis of (-)-himandrine
(1), a member of the class II galbulimima alkaloids. Noteworthy
features of this chemistry include the diastereoselective Diels-Alder
reaction for rapid synthesis of the trans-decalin containing tricycle
(-)-15 in an enantiomerically enriched form, the formal [3+3]
annulation strategy to secure the CDE-ring system with complete
diastereoselection, and successful implementation of our bioge-
netically inspired oxidative spirocyclization in converting 3 to (+)-
28. The successful and direct conversion of (-)-3 to (+)-28 drew
on the power of biogenetic considerations and fully utilized the
inherent chemistry of this plausible biosynthetic intermediate.
(21) Jung, M. E.; Lyster, M. A. J. Chem. Soc., Chem Comm. 1978, 315.
(22) The 1H NMR spectrum of 3-d3 was the same as that for the starting
aminoketoester (-)-3 with the exception of the C9-methine spin systems.
(23) Similar results were obtained using a C20 O-trimethylsilylated derivative
of (-)-3.
(24) Attempts at intermolecular C9 deprotonation were unsuccessful; the
proximity of the amine to C9-methine seems to facilitate tautomerization.
(25) Use of derivatives of aminoketoester 3 not possessing a basic amine (i.e.,
N-Cbz, N-Cl) resulted in no C9-deuterium incorporation over 24 h.
(26) Key HMBC correlations between C9/C2-H and C9/C6-H confirmed the
N-C9 bond connectivity.
Acknowledgment. M.M. is an Alfred P. Sloan Research Fellow,
a Beckman Young Investigator, and a Camille Dreyfus Teacher-
Scholar. M.T. acknowledges BMS and Novartis graduate fellow-
ships. We thank Justin Kim and Dr. Peter Mu¨ller for X-ray
crystallographic analysis of (-)-1. We thank Professor Robert G.
Griffin and Dr. Tony Bielecki for use of a high field instrument at
the MIT-Harvard Center for Magnetic Resonance (EB002026). We
acknowledge financial support by NIH-NIGMS (GM074825).
(27) The C14-methyl ether and the C17-methoxycarbonyl substituents greatly
shield the C16 alcohol leading to slow benzoylation.
(28) The reaction had to be stopped within 10 min; otherwise significantly more
hexacycle (+)-28 would be generated.
(29) Addition of succinimide does not lead to conversion of 30 to (+)-28.
(30) While the sensitivity of 30 precluded its derivatization, use of its more
stable C20-O-trimethylsilyl derivative under basic, acidic, or photochemical
conditions predominantly led to elimination and decomposition.
(31) Complete mass balance was observed, and the amount of hexacycle (+)-
28 formed was exactly proportional to the amount of 30 used.
(32) While C9 halogenation cannot be ruled out, C17 halogenation is consistent
with the lack of product formation using the C20-O-trimethylsilyl derivative
of 30 with significantly blocked access to C17.
Supporting Information Available: Experimental procedures,
spectroscopic data, copies of 1H and 13C NMR spectra, and X-ray
structure of (-)-1. This material is available free of charge via the
JA903790Y
9
9650 J. AM. CHEM. SOC. VOL. 131, NO. 28, 2009