1718
I. N. Egorov et al. / Tetrahedron Letters 51 (2010) 1717–1718
The proposed reaction mechanism includes initial formation of
a complex between 1,3,5-triazine-2,4(1H,3H)-dione and AlCl3.
Next, the activated triazine attacks the arene resulting in the for-
mation of a
r-complex of possible structure A; loss of a proton re-
sults in the formation of the aromatic system (Scheme 2).
In conclusion, a simple and convenient method for the addition
of non-activated arenes to
p-deficient heterocyclic compounds is
described. This method may serve as an alternative to using acti-
vated (het)arenes as coupling agents in the presence of transition
metal catalysts (including Suzuki, Kumada, Ullmann reactions)
for C–C bond formation between arenes and hetarenes.5
Acknowledgement
This work was supported by the program of the Russian Feder-
ation President for government support of young scientists, MK-
1157.2009.3.
Figure 1. ORTEP diagram of compound 8.9
Supplementary data
+
O
HN
O
O
HN
O
-
AlCl3
N
N
+ AlCl3
Supplementary data associated with this article can be found, in
N
H
N
H
References and notes
1
R
1. Giacomelli, G.; Porcheddu, A. Comprehensive Heterocyclic Chemistry III; Elsevier:
Amsterdam, Boston, Heidelberg, London, N-Y, 2008; Vol. 9, pp 197–290.
2. (a) Kaminski, Z. J.; Raneth, P.; Rudzinski, J. J. Org. Chem. 1998, 63, 4248; (b)
Masquelin, T.; Delgado, Y.; Baumle, V. Tetrahedron Lett. 1998, 39, 5725; (c)
Kunishima, M.; Hioki, K.; Wada, A.; Kobayashi, H.; Tani, S. Tetrahedron Lett.
2002, 43, 3323; (d) Samaritani, S.; Menicagli, R. Tetrahedron 2002, 58, 1381; (e)
Bork, J. T.; Lee, J. W.; Khersonsky, S. M.; Moon, H.-S.; Chang, Y.-T. Org. Lett. 2003,
5, 117; (f) Samaritani, S.; Signore, J.; Malanga, C.; Menicagli, R. Tetrahedron
2005, 61, 4475.
3. (a) Azev, Y. A.; Shorshnev, S. V.; Gabel, D. Mendeleev Commun. 2001, 11, 234; (b)
Azev, Y. A.; Shorshnev, S. V.; Gabel, D. Pharm. Chem. J. (Engl. Transl.) 2002, 36,
146.
4. (a) Chupakhin, O. N.; Charushin, V. N.; van der Plas, H. C. Nucleophilic Aromatic
Substitution of Hydrogen; Academic Press: San Diego, 1994; (b) Charushin, V. N.;
Chupakhin, O. N. Mendeleev Commun. 2007, 17, 249.
O
HN
O
H
R
H
N
H
+
- H+
+ H+
H
N
H
A
O
H
N
R
HN
O
N
H
R = H, CH3, Cl, Br, NMe2
2-8
Scheme 2.
5. (a) Hassan, J.; Sevignon, M.; Gozzi, C.; Shulz, E.; Lemaire, M. Chem. Rev. 2002,
102, 1359; (b) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
6. (a) Girke, W. P. K. Chem. Ber. 1979, 112, 1; (b) Girke, W. P. K. Chem. Ber. 1979,
112, 1348.
7. Ibrahim, Y. A. J. Ind. Chem. 1976, 14B, 273.
8. Etienne, A.; Bonte, B. Bull. Soc. Chim. Fr. 1975, 1419.
9. Crystallographic data have been deposited with the Cambridge
Crystallographic Data Centre (deposition number CCDC 743053). These data
10. Ziegler, E.; Zwainz, J. G. Z. Naturforsch. Teil B 1976, 31, 1142.
11. Bakibaev, A. A. Russ. J. Org. Chem. (Engl. Transl.) 1994, 30, 1771.
prepared using a known method.8 The 1H NMR spectra of com-
pound 3 synthesized by the two different methods were the same.
Investigation of the reaction conditions indicated that increas-
ing the temperature led to higher yields in each case. The yields
of products are not optimized at present. Reported methods give
product 3 in similar yields, 60%,8 58%10 and 54%.11