ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Synthesis of Amines with Pendant
Boronic Esters by Borrowing
Hydrogen Catalysis
Winson M. J. Ma, Tony D. James,* and Jonathan M. J. Williams*
Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.
t.d.james@bath.ac.uk; j.m.j.williams@bath.ac.uk
Received August 9, 2013
ABSTRACT
Amine alkylation reactions of alcohols have been performed in the presence of boronic ester groups to provide products which are known to have
use as molecular sensors. The boronic ester moiety could be present in either the alcohol or amine starting material and was not compromised in
the presence of a ruthenium catalyst.
In recent years a great deal of attention has been focused
on the alkylation reaction of amines, particularly the reac-
tion of an amine with an alkyl halide which is an electrophilic
alkylating agent.1 However, alkylation reactions can prove
difficult to control and the product is often over alkylated.2
There has been significant recent interest in the alkyla-
tion of amines with alcohols using hydrogen transfer
catalysts as an alternative to conventional alkylation
procedures.3,4
The hydrogen transfer catalysts operate by an activation
of the alcohol to an aldehyde in a process that we have
termed “Borrowing Hydrogen Methodology”.5
The borrowing hydrogen method typically uses ruthe-
nium or iridium as the catalyst and takes the hydrogen
from the alcohol 1 to form the aldehyde 2. This aldehyde
can react with an amine to form an imine 3, and the
hydrogen is then returned to give a CÀN bond in product
4 (Scheme 1).1e,5e,6
(1) (a) Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic
Chemistry; Oxford University Press: USA, 2001. (b) Ju, Y.; Varma, R. S.
Green Chem. 2004, 6, 219–221. (c) Mohri, K.; Suzuki, K.; Usui, M.;
Isobe, K.; Tsuda, Y. Chem. Pharm. Bull. 1995, 43, 159–161. (d) Moore,
J. L.; Taylor, S. M.; Soloshonok, V. A. ARKIVOC 2005, 287–292. (e)
Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents; Academic Press:
London, 1988. (f) Sachinvala, N.; Winsor, D. L.; Maskos, K.; Grimm, C.;
Hamed, O.; Vigo, T. L.; Bertoniere, N. R. J. Org. Chem. 2000, 65, 9234–
9237. (g) Salvatore, R. N.; Yoon, C. H.; Jung, K. W. Tetrahedron 2001,
57, 7785–7811. (h) Yamamoto, H.; Maruoka, K. J. Org. Chem. 1980, 45,
2739–2740.
This methodology generates water as the only reaction
byproduct and allows alcohols to replace more conven-
tional, but often toxic, alkyl halides as the alkylating agent.
(5) (a) Black, P. J.; Edwards, M. G.; Williams, J. M. J. Tetrahedron
2005, 61, 1363–1374. (b) Black, P. J.; Harris, W.; Williams, J. M. J.
Angew. Chem., Int. Ed. 2001, 40, 4475–4477. (c) Cami-Kobeci, G.;
Slatford, P. A.; Whittlesey, M. K.; Williams, J. M. J. Bioorg. Med.
Chem. Lett. 2005, 15, 535–537. (d) Hamid, M. H. S. A.; Allen, C. L.;
Lamb, G. W.; Maxwell, A. C.; Maytum, H. C.; Watson, A. J. A.;
Williams, J. M. J. J. Am. Chem. Soc. 2009, 131, 1766–1774. (e) Hamid,
M. H. S. A.; Williams, J. M. J. Chem. Commun. 2007, 725–727.
(6) (a) Black, P. J.; Edwards, M. G.; Williams, J. M. J. Eur. J. Org.
Chem. 2006, 4367–4378. (b) Burling, S.; Paine, B. M.; Nama, D.; Brown,
V. S.; Mahon, M. F.; Prior, T. J.; Pregosin, P. S.; Whittlesey, M. K.;
Williams, J. M. J. J. Am. Chem. Soc. 2007, 129, 1987–1995. (c) Cami-
Kobeci, G.; Williams, J. M. Chem. Commun. 2004, 9, 1072–1073. (d)
Edwards, M. G.; Williams, J. M. J. Angew. Chem., Int. Ed. 2002, 41,
4740–4743. (e) Hall, M. I.; Pridmore, S. J.; Williams, J. M. J. Adv. Synth.
Catal. 2008, 350, 1975–1978. (f) Haniti, M.; Hamid, S. A.; Williams,
J. M. J. Tetrahedron Lett. 2007, 48, 8263–8265. (g) Krafft, M. E.; Zorc,
B. J. Org. Chem. 1986, 51, 5482–5484. (h) Miyaura, N.; Suzuki, A. Chem.
Rev. 1995, 95, 2457–2483.
(2) (a) Matsuhashi, H.; Arata, K. Bull. Chem. Soc. Jpn. 1991, 64,
2605–2606. (b) Narayanan, S.; Prasad, B. P. J. Chem. Soc., Chem.
Commun. 1992, 1204–1205. (c) Valot, F.; Fache, F.; Jacquot, R.;
Spagnol, M.; Lemaire, M. Tetrahedron Lett. 1999, 40, 3689–3692.
(3) (a) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681–
703. (b) Guillena, G.; Ramon, D. J.; Yus, M. Chem. Rev. 2010, 110,
1611–1641. (c) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J.
Adv. Synth. Catal. 2007, 349, 1555–1575. (d) Nixon, T. D.; Whittlesey,
M. K.; Williams, J. M. J. Dalton Trans. 2009, 753–762.
€
(4) (a) Bahn, S.; Tillack, A.; Imm, S.; Mevius, K.; Michalik, D.;
Hollmann, D.; Neubert, L.; Beller, M. ChemSusChem 2009, 2, 551–557.
(b) Blank, B.; Madalska, M.; Kempe, R. Adv. Synth. Catal. 2008, 350,
749–758. (c) Blank, B.; Michlik, S.; Kempe, R. Adv. Synth. Catal. 2009,
351, 2903–2911. (d) Fujita, K. I.; Fujii, T.; Yamaguchi, R. Org. Lett.
2004, 6, 3525–3528. (e) Fujita, K.-i.; Enoki, Y.; Yamaguchi, R. Tetra-
hedron 2008, 64, 1943–1954. (f) Liu, S.; Rebros, M.; Stephens, G.; Marr,
A. C. Chem. Commun. 2009, 2308–2310. (g) Tillack, A.; Hollmann, D.;
Michalik, D.; Beller, M. Tetrahedron Lett. 2006, 47, 8881–8885.
r
10.1021/ol402271a
XXXX American Chemical Society