Scheme 1
.
FeCl3-Catalyzed Cyclization of ꢀ-Amino and
Table 1. FeCl3-Catalyzed Synthesis of 2-Alkenylpiperidines
ꢀ-Hydroxy Allylic Alcohol Derivatives (PG ) Protective Group)
entry
PG
R1
R2
1
2
yielda (%)
1
2
3
4
5
6
7
Boc
CBz
Ts
Ts
Ts
Ph
Ph
Ph
Me
H
Ac
Ac
Ac
Ac
Ac
H
1a
1b
1c
1d
1e
1f
2a
2b
2c
2d
2e
2c
2e
72
65
99
96
61
95
16b
The reactivity of N-protected ꢀ-amino allylic alcohol
derivatives 1a-g (R2 ) H) was examined first (Table 1).
When the N-protected ꢀ-amino allylic acetates 1a-c were
treated with FeCl3·6H2O (5 mol %) in CH2Cl2 at rt, a smooth
and fast reaction took place and the corresponding mono-
substituted piperidines 2a-c were isolated in good to
excellent yields (65-99%).17 The best result was obtained
when the N-tosyl protecting group was used (99% yield)
(Table 1, entry 3).18 The influence of the allylic substituent
R1 on the outcome of the cyclization was then investigated.
Replacing the phenyl substituent with a methyl group such
as in 1d virtually did not affect the reactivity of the substrate
Ts
Ts
Ph
H
H
1g
a Isolated yields. b FeCl3·6H2O (40 mol %), CH2Cl2, rt, 18 h.
as piperidine 2d was obtained in 96% yield (Table 1, entry
4). The strong activating influence of the allylic substituent
became obvious when the latter was completely removed.
Indeed, the yield in piperidine 2e obtained from the cylization
of primary allylic acetate 1e dropped to 61% (Table 1, entry
5). The reactivity of ꢀ-amino allylic alcohols and acetates
was found to be similar; when 1f (R1 ) Ph) was treated
with 5 mol % of FeCl3·6H2O, 2c was isolated in good yield
(95%) (Table 1, entry 6), whereas under the same conditions,
1g was poorly reactive even with 40 mol % of FeCl3·6H2O
(16% yield) (Table 1, entry 7).
(5) For recent examples, see: (a) Georgy, M.; Boucard, V.; Campagne,
J.-M. J. Am. Chem. Soc. 2005, 127, 14180. (b) Terrasson, V.; Marque, S.;
Campagne, J.-M.; Prim, D. AdV. Synth. Catal. 2006, 348, 2063. (c) Rao,
W.; Chan, P. W. H. Org. Biomol. Chem. 2008, 2426. (d) Lu, J.; Muth, E.;
Flore, U.; Henkel, G.; Merz, K.; Sauvageau, E.; Schwake, E.; Dyker, G.
AdV. Synth. Catal. 2006, 348, 456. (e) Zhan, Z.; Wang, W.; Yang, R.; Yu,
J.; Li, J.; Liu, H. Chem. Commun. 2006, 3352. (f) Qin, H.; Yamagiwa, N.;
Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2007, 46, 409. (g)
Rueping, M.; Nachtsheim, B. J.; Kuenkel, A. Org. Lett. 2007, 9, 825. (h)
Saito, T.; Nishimoto, Y.; Yasuda, M.; Baba, A. J. Org. Chem. 2006, 71,
8516. (i) Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006,
45, 793. (j) Kim, S. H.; Shin, C.; Pae, A. N.; Koh, H. Y.; Chang, M. H.;
Chung, B. Y.; Cho, Y. S. Synthesis 2004, 1581. (k) Yasuda, M.; Saito, T.;
Ueba, M.; Baba, A. Angew. Chem., Int. Ed. 2004, 43, 1414. (l) Yue, Y.;
Wang, Y.; Hu, W. Tetrahedron Lett. 2007, 48, 3975. (m) Noji, M.; Konno,
Y.; Ishii, K. J. Org. Chem. 2007, 72, 5161. (n) Huang, W.; Wang, J.; Shen,
Q.; Zhou, X. Tetrahedron Lett. 2007, 48, 3969. (o) Huang, W.; Wang, J.;
Shen, Q.; Zhou, X. Tetrahedron 2007, 63, 11636. (p) Huang, W.; Shen,
Q.-S.; Wang, J.-L.; Zhou, X.-G. Chin. J. Chem. 2008, 26, 729. (q) Sharma,
G. V. M.; Kumar, K. R.; Sreenivas, P.; Krishna, P. R.; Chorgade, M. S.
Tetrahedron: Asymmetry 2002, 13, 687. (r) Tsuchimoto, T.; Tobita, K.;
Hiyama, T.; Fukuzawa, S.-i. Synlett 1996, 557. (s) Tsuchimoto, T.; Tobita,
K.; Hiyama, T.; Fukuzawa, S.-i. J. Org. Chem. 1997, 6997. (t) Braun, M.;
Kotter, W. Angew. Chem., Int. Ed. 2004, 43, 514. (u) Luzung, M. R.; Toste,
F. D. J. Am. Chem. Soc. 2003, 125, 15760. (v) Sherry, B. D.; Radosevich,
A. T.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 6076. (w) Kennedy-
Smith, J. J.; Young, L. A.; Toste, F. D. Org. Lett. 2004, 6, 1325. (x) Ohri,
R. V.; Radosevich, A. T.; Hrovat, K. J.; Musich, C.; Huang, D.; Holman,
T. R.; Toste, F. D. Org. Lett. 2005, 7, 2501.
The reaction was generalized concerning N-protected
ꢀ-amino allylic acetates 3a-g in order to access
(9) (a) Jana, U.; Biswas, S.; Maiti, S. Tetrahedron Lett. 2007, 48, 4065.
(b) Ahmad, R.; Riahi, A.; Langer, P. Tetrahedron Lett. 2009, 50, 1490.
(10) (a) Jana, U.; Maiti, S.; Biswas, S. Tetrahedron Lett. 2008, 49, 858.
(b) Anxionnat, B.; Gue´rinot, A.; Reymond, S.; Cossy, J. Tetrahedron Lett.
2009, 50, 3470.
(11) (a) Salehi, P.; Iranpoor, N.; Behbahani, F. K. Tetrahedron 1998,
54, 943. (b) Prasad, K. R.; Anbarasan, P. Tetrahedron 2007, 63, 1089. (c)
Jia, X.; Zhao, P.; Liu, X.; Li, J. Synth. Commun. 2008, 38, 1617.
(12) For other examples and nucleophiles, see: (a) Watahiki, T.; Oriyama,
T. Tetrahedron Lett. 2002, 43, 8959. (b) Jana, U.; Biswas, S.; Maiti, S.
Eur. J. Org. Chem. 2008, 5798. (c) Yadav, J. S.; Reddy, R. V. S.; Charry,
D. N.; Madavi, C.; Kunwar, A. C. Tetrahedron Lett. 2009, 50, 81. (d) Liu,
Z.-Q.; Wang, J.; Han, J.; Zaho, Y.; Zhou, B. Tetrahedron Lett. 2009, 50,
1240. Iron Catalysis in Organic Chemistry; Plietker, B., Ed.; Wiley-VCH:
Weinheim, 2008. (e) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. ReV.
2004, 104, 6217. (f) Nishimoto, Y.; Onishi, Y.; Yasuda, M.; Baba, A.
Angew. Chem., Int. Ed. 2009, 48, 9131. See also ref 7b.
(13) Namba, K.; Nakagawa, Y.; Yamamoto, H.; Imagawa, H.; Nish-
izawa, M. Synlett 2008, 1719.
(6) For other examples, see: (a) Muzart, J. Eur. J. Org. Chem. 2007,
3077, and references cited therein. (b) Muzart, J. Tetrahedron 2005, 61,
4179, and references cited therein. (c) Shekhar, S.; Trantow, B.; Leitner,
A.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 11770. (d) Yamashita, Y.;
Gopalarathnam, A.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 7508. (e)
Utsunomiya, M.; Miyamoto, Y.; Ipposhi, J.; Ohshima, T.; Mashima, K.
Org. Lett. 2007, 9, 3371. (f) Nishibayashi, Y.; Shinoda, A.; Miyake, Y.;
Matsuzawa, H.; Sato, M. Angew. Chem., Int. Ed. 2006, 45, 4835. (g)
Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am.
Chem. Soc. 2002, 124, 11846. (h) Zaitsev, A. B.; Gruber, S.; Pregosin,
P. S. Chem. Commun. 2007, 4692. (i) Kabalka, G. W.; Dong, G.;
Venkataiah, B. Org. Lett. 2003, 5, 893. (j) Malkov, A. V.; Spoor, P.;
Vinader, V.; Kocˇovský, P. J. Org. Chem. 1999, 64, 5308.
(14) For a recent review, see ref 3c and references cited therein. For
Pd(II)-catalyzed processes, see : (a) Hirai, Y.; Nagatsu, M. Chem. Lett.
1994, 21. (b) Hirai, Y.; Watanabe, J.; Nozaki, T.; Yokoyama, H.;
Yamaguchi, S. J. Org. Chem. 1997, 62, 776. (c) Makabe, H.; Kok Kong,
L.; Hirota, M. Org. Lett. 2003, 5, 27. (d) Eustache, J.; Van de Weghe, P.;
Le Nouen, D.; Uyehara, H.; Kabuto, C.; Yamamoto, Y. J. Org. Chem. 2005,
70, 4043. (e) Yokoyama, H.; Ejiri, H.; Miyazawa, M.; Yamaguchi, S.; Hirai,
Y. Tetrahedron: Asymmetry 2007, 18, 852. (f) Hande, S. M.; Kawai, N.;
Uenish, J. J. Org. Chem. 2009, 74, 244.
(15) (a) Gnamm, C.; Krauter, C. M.; Bro¨dner, K.; Helmchen, G.
Chem.sEur. J. 2009, 15, 2050. (b) Helmchen, G.; Dahnz, A.; Du¨bon, P.;
Schelweis, M.; Weihofen, R. Chem. Commun. 2007, 675, and references
cited herein.
(16) (a) Aponick, A.; Li, C.-Y.; Biannic, B. Org. Lett. 2008, 10, 669.
(b) Aponick, A.; Li, C.-Y.; Palmes, J. A. Org. Lett. 2009, 11, 121.
(17) In the case of compound 1c, anhydrous FeCl3 was also evaluated
in order to catalyze the cyclization and lead to the same result as observed
with the more easy-to-handle hexahydrate.
(7) (a) Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew.
Chem., Int. Ed. 2005, 44, 3913. (b) Zhan, Z.-p.; Liu, J.-l.; Liu, H.-j.; Cui,
Y.-y.; Yang, R.-f.; Yang, W.-z.; Li, J.-p. J. Org. Chem. 2006, 71, 8298. (c)
Wang, J.; Zhang, L.; Jing, Y.; Huang, W.; Zhou, X. Tetrahedron Lett. 2009,
50, 4978. (d) Stadler, D.; Bach, T. Angew. Chem., Int. Ed. 2008, 47, 7557.
(8) Jana, U.; Maiti, S.; Biswas, S. Tetrahedron Lett. 2007, 48, 7160.
Org. Lett., Vol. 12, No. 8, 2010
1809