10.1002/ejoc.201701390
European Journal of Organic Chemistry
COMMUNICATION
[4]
a) S. Colonna, N. Gaggero, P. Pasta, G. Ottolina, Chem. Commun.
1996, 2303–2307; b) S. Colonna, N. Gaggero, G. Carrea, P. Pasta,
Chem. Commun. 1997, 439–440; c) G. De Gonzalo, D. E. Torres
Pazmiño, G. Ottolina, M. W. Fraaije, G. Carrea, Tetrahedron
Asymmetry 2005, 16, 3077–3083; d) G. De Gonzalo, D. E. Torres
Pazmiño, G. Ottolina, M. W. Fraaije, G. Carrea, Tetrahedron
Asymmetry 2006, 17, 130–135; e) R. D. Ceccoli, D. A. Bianchi, D. V.
Rial, Front. Microbiol. 2014, 5, 1–14; f) F. Hollmann, P.-C. Lin, B.
Witholt, A. Schmid, J. Am. Chem. Soc. 2003, 125, 8209–8217; g) E. W.
Van Hellemond, D. B. Janssen, M. W. Fraaije, Appl. Environ. Microbiol.
2007, 73, 5832–5839; h) J. Nikodinovic-Runic, L. Coulombel, D.
Francuski, N. D. Sharma, D. R. Boyd, R. M. O. Ferrall, K. E. O’Connor,
Appl. Microbiol. Biotechnol. 2013, 97, 4849–4858; i) A. Riedel, T. Heine,
A. H. Westphal, C. Conrad, P. Rathsack, W. J. H. van Berkel, D.
Tischler, AMB Express 2015, 5, 30.
Experimental Section
Agrocybe aegerita strain TM-A1 (DSM 22459) was grown in 2 L-shaken
flasks containing 0.5 L of 30 g L-1 soybean peptone. The culture was
maintained at 25°C and monitored daily for accumulation of UPO activity,
as well as of possible contaminant laccase activities, in the culture
medium. After 14-15 days, the mycelium was filtrated and the UPO was
recovered from the culture medium by ammonium sulfate precipitation.
Detailed methods are reported in the Supporting Information. The
analytical scale biooxidation of aryl alkyl sulfides was performed by
adding each substrate (1 mmol) to a 20% solution of CH3CN in citrate
phosphate buffer (10 mM, pH 7.0, 1 mL final volume) containing H2O2 (1
eq, 1 mM) and UPO (0.15 U mL-1, 0.166 M). Extraction with AcOEt
allowed the recovery of the desired oxidized product to be analysed by
HPLC on chiral column. The absolute configurations of the obtained
products were determined by comparing the tR reported in literature for
the (R) and (S) enantiomers of compounds 1a-10a in the same analytic
conditions. Suitable racemic mixtures of sulfoxides to be used as NMR
and HPLC standards were prepared by chemical sulfoxidations by
adding dropwise mCPBA (1.2 eq, 0.5 M in CHCl3) to a CHCl3 solution of
the desired aryl alkyl sulfide at 0°C (substrates 1-10, 1 eq, 50 mM, 2 mL
final volume). After stirring the mixture for 30-60 min, racemic sulfoxides
1a-10a were obtained by extraction with AcOEt, drying over sodium
sulfate and in vacuum concentration. Product were obtained in good
isolated yields (70-90%) and characterized by 1H NMR and HPLC
analysis on chiral column.
[5]
a) M. Hofrichter, R. Ullrich, Curr. Opin. Chem. Biol. 2014, 19, 116–125;
b) Y. Wang, D. Lan, R. Durrani, F. Hollmann, Curr. Opin. Chem. Biol.
2017, 37, 1–9; c) A. T. Martínez, F. J. Ruiz-Dueñas, S. Camarero, A.
Serrano, D. Linde, H. Lund, J. Vind, M. Tovborg, O. M. Herold-
Majumdar, M. Hofrichter, et al., Biotechnol. Adv. 2017, 35, 815–831.
R. Ullrich, J. Nüske, K. Scheibner, J. Spantzel, M. Hofrichter, Appl.
Environ. Microbiol. 2004, 70, 4575–4581.
[6]
[7]
a) M. J. Pecyna, R. Ullrich, B. Bittner, A. Clemens, K. Scheibner, R.
Schubert, M. Hofrichter, Appl. Microbiol. Biotechnol. 2009, 84, 885–
897; b) K. Piontek, E. Strittmatter, R. Ullrich, G. Gröbe, M. J. Pecyna, M.
Kluge, K. Scheibner, M. Hofrichter, D. A. Plattner, J. Biol. Chem. 2013,
288, 34767–34776; c) M. Kluge, R. Ullrich, K. Scheibner, M. Hofrichter,
Green Chem. 2012, 14, 440; d) X. Wang, R. Ullrich, M. Hofrichter, J. T.
Groves, Proc. Natl. Acad. Sci. 2015, 112, 3686–3691; e) S. Peter, M.
Kinne, X. Wang, R. Ullrich, G. Kayser, J. T. Groves, M. Hofrichter,
FEBS J. 2011, 278, 3667–3675; f) S. Peter, M. Kinne, X. Wang, R.
Ullrich, G. Kayser, J. T. Groves, M. Hofrichter, FEBS J. 2011, 278,
3667–3675.
Acknowledgements
[8]
[9]
a) P. Molina-Espeja, E. Garcia-Ruiz, D. Gonzalez-Perez, R. Ullrich, M.
Hofrichter, M. Alcalde, Appl. Environ. Microbiol. 2014, 80, 3496–3507;
b) P. Molina-Espeja, S. Ma, D. M. Mate, R. Ludwig, M. Alcalde, Enzyme
Microb. Technol. 2015, 73–74, 29–33.
This work was supported by Fondazione Cariplo, grant n. 2014-
0568.
a) E. Fernández-Fueyo, Y. Ni, A. Gomez Baraibar, M. Alcalde, L. M.
van Langen, F. Hollmann, J. Mol. Catal. B Enzym. 2016, 134, 347–352;
b) M. Poraj-Kobielska, S. Peter, S. Leonhardt, R. Ullrich, K. Scheibner,
M. Hofrichter, Biochem. Eng. J. 2015, 98, 144–150; c) Y. Ni, E.
Fernández-Fueyo, A. G. Baraibar, R. Ullrich, M. Hofrichter, H. Yanase,
M. Alcalde, W. J. H. van Berkel, F. Hollmann, Angew. Chemie - Int. Ed.
2016, 55, 798–801.
Keywords: unspecific peroxigenase •enantioselectivity • chiral
sulfoxides • biocatalysis • asymmetric oxidation
[1]
a) I. Fernández, N. Khiar, Chem. Rev. 2003, 103, 3651–3705; b) H.
Pellissier, Tetrahedron 2006, 62, 5559–5601; c) E. Wojaczyńska, J.
Wojaczyński, Chem. Rev. 2010, 110, 4303–4356; d) S. Otocka, M.
Kwiatkowska, L. Madalińska, P. Kiełbasiński, Chem. Rev. 2017, 117,
4147–4181.
[10] a) A. Horn, R. Ullrich, M. Hofrichter, K. Scheibner, U. Kragl,
Proceedings of the 8th International Conference on Biocatalysis &
[2]
[3]
a) F. Van De Velde, F. Van Rantwijk, R. A. Sheldon, Trends Biotechnol.
2001, 19, 73–80; b) S. Colonna, S. Del Sordo, N. Gaggero, G. Carrea,
P. Pasta, Heteroat. Chem. 2002, 13, 467–473; c) T. Matsui, Y.
Dekishima, M. Ueda, Appl. Microbiol. Biotechnol. 2014, 98, 7699–7706.
a) S. Colonna, N. Gaggero, A. Manfredi, L. Casella, M. Gullotti, G.
Carrea, P. Pasta, Biochemistry 1990, 29, 10465–10468; b) S. Colonna,
N. Gaggero, L. Casella, G. Carrea, P. Pasta, Tetrahedron Asymmetry
1992, 3, 95–106; c) S. Bormann, A. Gomez Baraibar, Y. Ni, D.
Holtmann, F. Hollmann, Catal. Sci. Technol. 2015, 5, 2038–2052.
Biotranformations (BIOTRANS), Oviedo (Spain) 2007,
p 63; b) E.
Aranda, M. Kinne, M. Kluge, R. Ullrich, M. Hofrichter, Appl. Microbiol.
Biotechnol. 2009, 82, 1057–1066.
[11] A. Karich, K. Scheibner, R. Ullrich, M. Hofrichter, J. Mol. Catal. B
Enzym. 2016, 134, 238–246
This article is protected by copyright. All rights reserved.