Angewandte
Chemie
[5] Y.Y.Won, H.T.Davis, F.S.Bates,
[6] A.Halperin, M.Tirrell, T.P.Lodge, Adv. Polym. Sci. 1992, 100,
31.
[7] A.Laschewsky, Adv. Polym. Sci. 1995, 124, 1.
[8] P.Alexandridis, Curr. Opin. Colloid Interface Sci. 1996, 1, 490.
[9] N.S. Cameron, M.K. Corbierre, A. Eisenberg,
1999, 77, 1311.
Science 1999, 283, 960.
effect also increases very rapidly as the squares become much
darker upon staining with OsO4.These results support the
idea that PB chains are located on the surface of the platelets
and that their cross-linking with OsO4 stabilizes the morphol-
ogy and converts 2D supramolecular ensembles into macro-
molecular objects.
Can. J. Chem.
Similar single-crystalline sandwich structures were
observed in solutions of PS–PEO diblocks in toluene,[44] but
not for PB–PEO linear amphiphiles, which typically form
large 2D layers.[45] We specifically synthesized a linear PB–
PEO molecule with the same volume ratio of blocks[41] but
similar structures were not observed in hexane.Figure 5 also
reveals that whereas some of the squares are isolated
structures (see inset), the majority of them have a screw
dislocation in the center and a helical ramp is created by
several interconnected layers.The formation of discrete 2D
objects with a narrow size distribution, rather than large
layers, suggests that the crystalline growth is terminated when
the size approaches some critical value (ꢀ 1 micron).The
exact mechanism that leads to such limited growth of the
observed 2D microstructures is not known.However, we
conclude that a simple change from a V-shaped to a starlike
molecular architecture profoundly influences the morphology
of the self-assembled structures formed by PB–PEO amphi-
philes in selective solvents, namely hexane and water (see also
Figure 2).The starlike architecture seems to disturb the
crystallization process which may also be related to an
inability of the arms to pack densely owing to the presence of
a disklike core.This may be the driving force of an alternative
assembly into reverse cylindrical micelles with little or no
crystalline order in the PEO core as suggested by the highly
flexible and winding shape of the supermicelles (Figure 4b).
In summary, this study brings a simple, yet unexpected,
conclusion: Starlike molecular architecture does not always
have a detrimental influence on self-assembly processes and it
provides a rare opportunity for novel hierarchical ensembles,
which may not be possible even in their linear analogues, to be
generated.The presence of a rigid disklike core in a starlike
amphiphile promotes the formation of cylindrical micelles in
the selective solvents, water and hexane.A comparison of the
self-assembled structures formed by V-shaped and starlike
amphiphiles clearly demonstrates that the molecular archi-
tecture itself is a very powerful morphogenic factor.Thus,
synthetic manipulation of the architecture of amphiphiles can
be an efficient way to generate complex and yet unseen
morphologies.
[10] S.Jain, F.S.Bates, Science 2003, 300, 460.
[11] a) JM. J..Frechet, CJ..Hawker in
Comprehensive Polymer
Science, 2nd supplement (Eds.: S. L. Aggarwal, S. Russo),
Pergamon, Oxford, 1996, p.140; b) A.W. Bosman, H.M.
Jansen, E.W. Meijer, Chem. Rev. 1999, 99, 1665; c) S.C.
Zimmerman, F.W. Zeng, D.E.C. Reichert, S.V. Kolotuchin,
Science 1996, 271, 1095; d) V.Percec, M.Glodde, T.K.Bera, Y.
Miura, I.Shiyanovskaya, K.D.Singer, V.S.K.Balagurusamy,
P.A.Heiney, I.Schnell, A.Rapp, H.W.Spiess, S.D.Hudson, H.
Duan, Nature 2002, 419, 384; e) A.P.H.J.Schenning, C.Elissen-
Romµn, J.W. Weener, M.W.P.L. Baars, S.J. van der Gaast,
E.W.Meijer, J. Am. Chem. Soc. 1998, 120, 8199.
[12] a) N.Hadjichristidis, M.Pitsikalis, S.Pispas, H.Iatrou,
Chem.
Rev. 2001, 101, 3747; b) C.J. Hawker, J.M.J. Frechet, R.B.
Grubbs, J.Dao, J. Am. Chem. Soc. 1995, 117, 10763; c) K.Hong,
D.Uhrig, J.W.Mays, Curr. Opin. Solid State Mater. Sci. 1999, 4,
531; d) S.Kanaoka, M.Sawamoto, T.Higashimura,
Macro-
molecules 1992, 25, 6414; e) S.Angot, K.S.Murthy, D.Taton, Y.
Gnanou, Macromolecules 1998, 31, 7218; f) S.Jacob, I.Majoros,
J.P. Kennedy, Macromolecules 1996, 29, 8631; g) H.A. Klok,
J.R.Hernandez, S.Becker, K.Mullen,
J. Polym. Sci. Part A:
Polym. Chem. 2001, 39, 1572.
[13] D.Voulgaris, C.Tsitsilianis, V.Grayer, FJ..Esselink, G.
Hadziioannou, Polymer 1999, 40, 5879.
[14] H.Engelkamp, S.Middelbeek, R.J.M.Nolte, Science 1999, 284,
785.
[15] R.H.Jin, Macromol. Chem. Phys. 2003, 204, 403.
[16] J.Teng, E.R.Zubarev, J. Am. Chem. Soc. 2003, 125, 11840.
[17] J.H. Wu, M.D. Watson, K. Mullen,
Angew. Chem. 2003, 115,
5487; Angew. Chem. Int. Ed. 2003, 42, 5329.
[18] Y.-S. Yoo, J.-H. Choi, J.-H. Song, N.-K. Oh, W.-C. Zin, S. Park, T.
Chang, M.Lee, J. Am. Chem. Soc. 2004, 126, 6294.
[19] A.Heise, J.L.Hedrick, C.W.Frank, R.D.Miller,
Soc. 1999, 121, 8647.
[20] S.Kanaoka, S.Nakata, H.Yamaoka, Macromolecules 2002, 35,
J. Am. Chem.
4564.
[21] F.M.Menger, A.V.Peresypkin, S.X.Wu,
2001, 14, 392.
[22] X.S. Wang, M.A. Winnik, I. Manners,
Commun. 2003, 24, 403.
[23] G.Gorodyska, A.Kiriy, S.Minko, C.Tsitsilianis, M.Stamm,
Nano Lett. 2003, 3, 365.
[24] Y.H.Kim, O.W.Webster, J. Am. Chem. Soc. 1990, 112, 4592.
[25] H.-B.Mekelbur, W.Jaworek, F.Vögtle, Angew. Chem. 1992, 104,
1609; Angew. Chem. Int. Ed. Engl. 1992, 31, 1571.
[26] G.R. Newkome, C.N. Moorefield, J.M. Keith, G.R. Baker,
G.H.Escamilla, Angew. Chem. 1994, 106, 701; Angew. Chem.
Int. Ed. Engl. 1994, 33, 666.
[27] D.Voulgaris, C.Tsitsilianis, Macromol. Chem. Phys. 2001, 202,
3284.
[28] R.H.Jin, Adv. Mater. 2002, 14, 889.
J. Phys. Org. Chem.
Macromol. Rapid
Received: June 8, 2004
Keywords: amphiphiles · block copolymers · micelles ·
.
nanostructures · self-assembly
[29] A.P.Narrainen, S.Pascual, D.M.Haddleton, J. Polym. Sci. Part
A: Polym. Chem. 2001, 39, 1572.
[1] J.Israelachvili, Intermolecular and Surface Forces, 2nd ed.,
[30] J.Z.Du, Y.M.Chen, J. Polym. Sci. Part A: Polym. Chem. 2004,
39, 2263.
[31] F.Lafleche, T.Nicolai, D.Durand, Y.Gnanou, D.Taton,
Macromolecules 2003, 36, 1341.
Academic Press, San Diego, 1992.
[2] P.Alexandridis, B.Lindman, Amphiphilic Block Copolymers:
Self-Assembly and Applications, Elsevier, New York, 2000.
[3] L.Zhang, A.Eisenberg, Science 1995, 268, 1728.
[32] I.V.Berlinova, I.M.Panayotov, Macromol. Chem. Phys. 1989,
190, 1515.
[4] S.Förster, M.Zisenis, E.Wenz, M.Antonietti,
J. Chem. Phys.
1996, 104, 9956.
Angew. Chem. Int. Ed. 2004, 43, 5491 –5496
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5495