10.1002/anie.201808866
Angewandte Chemie International Edition
see: g) E. Shirakawa, T. Yamagami, T. Kimura, S. Yamaguchi, T.
Hayashi, J. Am. Chem. Soc. 2005, 127, 17164; For organozinc
reagents, see: h) K. Murakami, H. Yorimitsu, K. Oshima, Org. Lett.
2009, 11, 2373; For organolithium reagents, see: i) M. Hojo, Y.
Murakami, H. Aihara, R. Sakuragi, Y. Baba, A. Hosomi, Angew.
Chem. 2001, 113, 641; Angew. Chem., Int. Ed. 2001, 40, 621.
W.-W. Yao, K. Lu, L.-Y. Kong, Y.-T. Lin, M. Ye J. Am. Chem. Soc.
2017, 139, 1786; i) H. Chen, P. Wedi, T. Meyer, G. Tavakoli, M. van
Gemmeren, Angew. Chem. 2018, 130, 2523; Angew. Chem. Int. Ed.
2018, 57, 2497; j) P. Wang, P. Verma, G. Xia, J. Shi, J. X. Qiao, S.
Tao, P. T. W. Cheng, M. A. Poss, M. E. Farmer, K.-S. Yeung, J.-Q.
Yu, Nature 2017, 551, 489.
[3] For selected reviews on C–H bond functionalization, see: a) F.
Kakiuchi, S. Murai, Acc. Chem. Res. 2002, 35, 826; b) F. Kakiuchi, N.
Chatani, Adv. Synth. Catal. 2003, 345, 1077; c) B. Li, S. Yang, Z. Shi,
Synlett 2008, 7, 949; d) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu,
Angew. Chem. 2009, 121, 5196; Angew. Chem. Int. Ed. 2009, 48,
5094; e) R. Giri, B.-F. Shi, K. M. Engle, N. Maugel, J.-Q. Yu, Chem.
Soc. Rev. 2009, 38, 3242; f) L. Ackermann, R. Vicente, A. Kapdi,
Angew. Chem. 2009, 121, 9976; Angew. Chem. Int. Ed. 2009, 48,
9792; g) L.-M. Xu, B.-J. Li, Z. Yang, Z.-J. Shi, Chem. Soc. Rev. 2010,
39, 712; h) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147;
i) L. Ackermann, Chem. Rev. 2011, 111, 1315; j) J. Yamaguchi, A. D.
Yamaguchi, K. Itami, Angew. Chem. 2012, 124, 9092; Angew. Chem.
Int. Ed. 2012, 51, 8960; k) J. Wencel-Delord, F. Glorius, Nature Chem.
2012, 5, 369.
[7]
[8]
For reviews on transition-metal-catalysed hydroarylation reactions of
alkynes via C–H bond functionalization pathway, see: a) T. Kitamura,
Eur. J. Org. Chem. 2009, 1111; b) L. Yang, H. Huang, Chem. Rev.
2015, 115, 3468.
a) C. Jia, D. Piao, J. Oyamada, W. Lu, T. Kitamura, Y. Fujiwara,
Science, 2000, 287, 1992; b) C. Jia, W. Lu, J. Oyamada, T. Kitamura,
K. Matsuda, M. Irie, Y. Fujiwara, J. Am. Chem. Soc. 2000, 122, 7252.
[9] a) Y. Nakao, Chem. Rec. 2011, 11, 242; b) Y. Nakao, K. S. Kanyiva, S.
Oda, T. Hiyama, J. Am. Chem. Soc. 2006, 128, 8146; c) K. S. Kanyiva,
Y. Nakao, T. Hiyama, Angew. Chem. 2007, 119, 9028; Angew. Chem.
Int. Ed. 2007, 46, 8872; d) Y. Nakao, K. S. Kanyiva, T. Hiyama, J.
Am. Chem. Soc. 2008, 130, 2448; e) Y. Nakao, N. Kashihara, K. S.
Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2008, 130, 16170; f) Y.
Nakao, Y. Yamada, N. Kashihara, T. Hiyama, J. Am. Chem. Soc. 2010,
132, 13666.
[4] For selected examples on hydroarylation of alkyne via DG-assisted C–
H activation pathway, see: a) U. R. Aulwurm, J. U. Melchinger, H.
Kisch, Organometallics 1995, 14, 3385; b) Y. G. Lim, K. H. Lee, B. T.
Koo, J. B. Kang, Tetrahedron Lett. 2001, 42, 7609; c) S. G. Lim, J. H.
Lee, C. W. Moon, J. B. Hong, C. H. Jun, Org. Lett. 2003, 5, 2759; d)
D. A. Colby, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2008,
130, 3645; e) Y. Shibata, Y. Otake, M. Hirano, K. Tanaka, Org. Lett.
2009, 11, 689; f) T. Katagiri, T. Mukai, T. Satoh, K. Hirano, M. Miura,
Chem. Lett. 2009, 38, 118; g) D. J. Schipper, M. Hutchinson, K.
Fagnou, J. Am. Chem. Soc. 2010, 132, 6910; h) K. Gao, P.-S. Lee, T.
Fujita, N. Yoshikai, J. Am. Chem. Soc. 2010, 132, 12249; i) P.-S. Lee,
T. Fujita, N. Yoshikai, J. Am. Chem. Soc. 2011, 133, 17283; j) Y.
Hashimoto, K. Hirano, T. Satoh, F. Kakiuchi, M. Miura, Org. Lett.
2012, 14, 2058; k) B. J. Fallon, E. Derat, M. Amatore, C. Aubert, F.
Chemla, F. Ferreira, A. Perez-Luna, M. Petit, J. Am. Chem. Soc. 2015,
137, 2448; l) H. Cheng, J. C. Bolm, Org. Lett. 2017, 19,
6284; m) M. Nagamoto, J.-i. Fukuda, M. Hatano, H. Yorimitsu, T.
Nishimura, Org. Lett. 2017, 19, 5952. For examples of hydroarylation
of alkynes directed by a removable carboxyl group, see: n) J. Zhang,
R. Shrestha, J. F. Hartwig, P. Zhao, Nature Chem. 2016, 8, 1144; o) A.
Biafora, B. A. Khan, J. Bahri, J. M. Hewer, L. J. Goossen, Org. Lett.
2017, 19, 1232.
[5] For reviews on nondirected C–H bond activation, see: a) N. Kuhl, M. N.
Hopkinson, J. Wencel-Delord, F. Glorius, Angew. Chem. 2012, 124,
10382; Angew. Chem. Int. Ed. 2012, 51, 10236; b) L. Zhou, W. Lu,
Chem. Eur. J. 2014, 20, 634; c) J. F. Hartwig, M. A. Larsen, ACS Cent.
Sci. 2016, 2, 281. d) P. Wedi, M. van Gemmeren, Angew. Chem. 2018,
130, 13198; Angew. Chem. Int. Ed. 2018, 57, 13016.
[6] For examples on the nondirected Pd-catalysed arene C–H
functionalization, see: a) Y. Fujiwara, I. Moritani, S. Danno, R. Asano,
S. Teranishi, J. Am. Chem. Soc. 1969, 91, 7166; b) T. Yokota, M. Tani,
S. Sakaguchi, Y. Ishii, J. Am. Chem. Soc. 2003, 125, 1476; c) M.
Dams, D. E. De Vos, S. Celen, P. A. Jacobs, Angew. Chem. 2003, 115,
3636; Angew. Chem. Int. Ed. 2003, 42, 3512; d) Y.-H. Zhang, B.-F.
Shi, J.-Q. Yu, J. Am. Chem. Soc. 2009, 131, 5072; e) M. H. Emmert,
A. K. Cook, Y. J. Xie, M. S. Sanford, Angew. Chem. 2011, 123, 9581;
Sanford, J. Am. Chem. Soc. 2015, 137, 3109; h) Y.-X. Luan, T. Zhang,
[10]
Only one example was reported on the reaction of benzene and
chlorobenzene with internl alkyne, see: N. Tsukada, T. Mitsuboshi, H.
Setoguchi, Y. Inoue, J. Am. Chem. Soc. 2003, 125, 12102.
[11] a) C.-H. Ying, S.-B. Yan, W.-L. Duan, Org. Lett. 2014, 16, 500; b) C.-
H. Ying, W.-L. Duan, Org. Chem. Front. 2014, 1, 546.
[12] a) B.-F. Shi, N. Maugel, Y.-H. Zhang, J.-Q. Yu, Angew. Chem. 2008,
120, 4960; Angew. Chem. Int. Ed. 2008, 47, 4882; b) K. M. Engle, D.-
H. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 14137; c) D.-H.
Wang, K. M. Engle, B.-F. Shi, J.-Q. Yu, Science 2010, 327, 315.
[13] A mixture of (E)-3g (no (Z)-3g) and 4g with chorine migration was
observed in a ratio of 87:13 by GC-MS analysis, see the supporting
information for details.
[14] For a review on the interpretation of deuterium kinetic isotope effects
in C–H bond functionalization, see: E. M. Simmons, J. F. Hartwig,
Angew. Chem. 2012, 124, 3120; Angew. Chem. Int. Ed. 2012, 51,
3066.
[15] Bromo- or iodo-arenes are not tolerated due to the occurrence of C-
Br(I) bond cleavage under the reaction conditions.
[16] For reviews on metal-catalysed 1,4-migration, see: a) S. Ma, Z. Gu,
Angew. Chem. 2005, 117, 7680; Angew. Chem. Int. Ed. 2005, 44,
7512; b) F. Shi, R. C. Larock, Top. Curr. Chem. 2010, 292, 123; c) K.
Gao, N. Yoshikai, Acc. Chem. Res. 2014, 47, 1208; For selected
examples of 1,4-palladium migration, see: d) G. Dyker, Angew. Chem.
1992, 104, 1079; Angew. Chem. Int. Ed. Engl. 1992, 31, 1023; e) G.
Dyker, Chem. Ber. 1994, 127, 739; f) Q. Tian, R. C. Larock, Org. Lett.
2000, 2, 3329; g) K. Oguma, M. Miura, T. Satoh, M. Nomura, J. Am.
Chem. Soc. 2000, 122, 10464; h) T.-J. Hu, G. Zhang, Y.-H. Chen, C.-
G. Feng, G.-Q. Lin, J. Am. Chem. Soc. 2016, 138, 2897; i) T.-J. Hu,
M.-Y. Li, Q. Zhao, C.-G. Feng, G.-Q. Lin, Angew. Chem. 2018, 130,
5973; Angew. Chem. Int. Ed. 2018, 57, 5871.
[17] For selected examples of palladium-catalysed reaction involving
halide-migration, see: a) G. Zhu, Z. Zhang, J. Org. Chem. 2005, 70,
3339; b) S. G. Newman, M. Lautens, J. Am. Chem. Soc. 2011, 133,
1778; c) H. Liu, C. Li, D. Qiu, X. Tong, J. Am. Chem. Soc. 2011, 133,
6387; d) C. M. Le, P. J. C. Menzies, D. A. Petrone, M. Lautens,
Angew. Chem. 2015, 127, 256; Angew. Chem. Int. Ed. 2015, 54, 254; e)
C. M. Le, T. Sperger, R. Fu, X. Hou, Y. H. Lim, F. Schoenebeck, M.
Lautens, J. Am. Chem. Soc. 2016, 138, 14441.
4
This article is protected by copyright. All rights reserved.