Martin Oestreich, Gertrud Auer
COMMUNICATIONS
In order to separate the formed dimethylphenylsilyllithium
(2.00 mmol, ~80% conversion) from unreacted lithium metal,
the resulting dark red solution was transferred to another flask
via a double-ended cannula. At 08C, ZnCl2 (1.00 mL,
1.00 mmol, 1.00 equiv., 1 M in Et2O) was added accompanied
by a color change from red to yellowish brown. The reaction
mixture was maintained at this temperature for further
15 min and was then ready to use.
Acknowledgements
The research was supported by the Deutsche Forschungsge-
meinschaft (Emmy Noether Fellowship, Oe 249/2–3), the Fonds
der Chemischen Industrie, and the Wissenschaftliche Gesell-
schaft, Freiburg im Breisgau. The authors thank Barbara Wein-
er for preliminary studies and Ilona Hauser for the preparation
of PhMe2SiCl. M. O. is indebted to Professor Reinhard Brꢀck-
ner for his continuous support.
References and Notes
[1] For a review on recent developments, see: L. Chabaud, P.
James, Y. Landais, Eur. J. Org. Chem. 2004, 3173–3199.
[2] a) E. Langkopf, D. Schinzer, Chem. Rev. 1995, 95, 1375–
1408; b) C. E. Masse, J. S. Panek, Chem. Rev. 1995, 95,
1293–1316; c) T. H. Chan, D. Wang, Chem. Rev. 1995,
Representative Procedure for the Copper-Catalyzed
Allylic Substitution
A suspension of CuI (9.6 mg, 0.050 mmol, 5.0 mol %) and THF
(1 mL) was pre-cooled to ꢀ788C and treated with bis(dime-
thylphenylsilyl)zinc (1.00 mmol, 1.00 equiv.) via syringe. The
auburn reaction mixture was allowed to warm to 08C and
maintained at this temperature for 20 min. Addition of either
geranyl/neryl acetate (E)-5a/(Z)-5a (196 mg, 1.00 mmol, 1.00
equiv.) or geranyl/neryl N-phenyl carbamate (E)-5b/(Z)-5b
(273 mg, 1.00 mmol, 1.00 equiv.) in THF (1 mL) was followed
by stirring for 1 h at 08C. Upon completion of the reaction,
the mixture was poured into saturated aqueous NH4Cl
(5 mL) and the flask was rinsed with methyl tert-butyl ether
(10 mL). The aqueous phase was separated and extracted
with methyl tert-butyl ether (3ꢁ10 mL). The combined organ-
ic phases were extracted with brine (10 mL). After drying
(Na2SO4), the solvents were evaporated under reduced pres-
sure and the crude product, (E)-14 or (Z)-14 respectively,
was purified by flash chromatography on silica gel using cyclo-
hexane as solvent.
`
95, 1279–1292; d) I. Fleming, J. Dunogues, R. Smithers,
Org. React. 1989, 37, 57–575.
[3] For an excellent summary, see: T. K. Sarkar, in: Science
of Synthesis, Vol. 4, Georg Thieme Verlag, Stuttgart,
2002, pp. 837–925 and references cited therein.
[4] a) R. K. Dieter, in: Modern Organocopper Chemistry,
(Ed.: N. Krause), Wiley-VCH, Weinheim, 2002, pp. 79–
144; b) I. Fleming, in: Organocopper Reagents. A Practi-
cal Approach, (Ed.: R. J. K. Taylor), Oxford Academic
Press, New York, 1994, pp. 257–292.
[5] a) I. Fleming, T. W. Newton, J. Chem. Soc. Perkin Trans.
1 1984, 1805–1808; b) I. Fleming, A. P. Thomas, J. Chem.
Soc. Chem. Commun. 1985, 411–413; c) I. Fleming, A. P.
Thomas, J. Chem. Soc. Chem. Commun. 1986, 1456–
1457; d) I. Fleming, D. Higgins, N. J. Lawrence, A. P.
Thomas, J. Chem. Soc. Perkin Trans. 1 1992, 3331–3349.
[6] For Me2Cu(CN)Li2-catalyzed allylic substitution of allyl-
ic epoxides using mixed silyl zincates, see: B. H. Lipshutz,
J. A. Sclafani, T. Takanami, J. Am. Chem. Soc. 1998, 120,
4021–4022.
(E)-(3,7-Dimethyl-2,6-octadienyl)dimethylphenylsilane
[(E)-14] (Table 1, Entry 5): Colorless liquid; yield: 83% [from
(E)-5a] and 65% [from (E)-5b]; Rf (cyclohexane)¼0.48; IR
˜
(cuvette): n¼3055 (s), 2985 (s), 2686 (w), 2361 (m), 2307 (s),
2254 (m), 1549 (w), 1427 (s), 1264 (s), 1155 (m), 1113 (m),
1019 (m) cmꢀ1; 1H NMR (CDCl3, 400 MHz): d¼0.26 (s, 6H),
1.50 (s, 3H), 1.61 (s, 3H), 1.63 (d, J¼8.6 Hz, 2H), 1.68 (s, 3H),
1.98 (m, 4H), 5.09 (tt, J¼6.6 Hz, J¼1.3 Hz, 1H), 5.18 (tq, J¼
8.6 Hz, J¼1.3 Hz, 1H), 7.34 (m, 3H), 7.50 (m, 2H); 13C NMR
(CDCl3, 100 MHz): d¼ ꢀ3.2, 15.9, 17.7, 17.8, 25.8, 27.0, 40.1,
119.7, 124.7, 127.8, 128.9, 131.2, 133.3, 133.7, 134.3, 139.5; LR-
MS (CI/NH3): m/z¼290 [(MþNH4)þ], 273 [(MþH)þ]; anal.
calcd. for C18H28Si (272.50): C 79.34, H 10.36; found: C 79.13,
H 10.22.
(Z)-(3,7-Dimethyl-2,6-octadienyl)dimethylphenylsilane
[(Z)-14] (Table 1, Entries 6–8): Colorless liquid; yield: 96–
98% [from (Z)-5a] and 86–97% [from (Z)-5b]; Rf (cyclo-
hexane)¼0.48; 1H NMR (CDCl3, 400 MHz): d¼0.28 (s, 6H),
1.62 (s, 3H), 1.67 (d, J¼8.6 Hz, 2H), 1.70 (s, 6H), 1.95 (m,
4H), 5.11–5.14 (m, 1H), 5.17 (t, J¼8.6 Hz, 1H), 7.35 (m, 3H),
7.51 (m, 2H); 13C NMR (CDCl3, 100 MHz): d¼ ꢀ3.1, 17.4,
17.7, 23.4, 25.8, 26.5, 31.8, 119.9, 124.7, 127.8, 128.9, 129.2,
131.4, 133.7, 134.3, 139.4.
[7] For the preparation of allylic silanes from 1,3-dienes us-
ing silyl cuprates, see: V. Liepins, J.-E. Bꢁckvall, Eur. J.
Org. Chem. 2002, 3527–3535.
[8] For the stereoselective preparation of allylic silanes, see:
J. H. Smitrovich, K. A. Woerpel, J. Org. Chem. 2000, 65,
1601–1614.
[9] Y. Morizawa, H. Oda, K. Oshima, H. Nozaki, Tetrahe-
dron Lett. 1984, 25, 1163–1166.
[10] M. Oestreich, B. Weiner, Synlett 2004, 2139–2142.
[11] a) Ac2O, Et3N, 4-N,N-dimethylaminopyridine (5.0
mol %), CH2Cl2, rt, 59–92%; b) phenyl isocyanate, Et3
N, 4-N,N-dimethylaminopyridine (50 mol %), CH2Cl2, rt,
45–90%; c) S. Hansson, A. Heumann, T. Rein, B. ꢂker-
mark, J. Org. Chem. 1990, 55, 975–984; d) D. Liotta, G.
Zima, M. Saindane, J. Org. Chem. 1982, 47, 1258–1267.
[12] B. Breit, P. Demel, in: Modern Organocopper Chemistry,
(Ed.: N. Krause), Wiley-VCH, Weinheim, 2002, pp. 188–
223.
640
ꢄ 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
asc.wiley-vch.de
Adv. Synth. Catal. 2005, 347, 637–640