C O M M U N I C A T I O N S
Table 2. Ligand-Controlled Regioselectivity Reversal
conjugated enynes provides useful substructures, several of which
were previously inaccessible by aldehyde-alkyne reductive cou-
pling. Either regiochemical outcome of the alkyne addition may
be selectively accessed with each of these substrate classes. The
extent of regiochemical reversal seen across the broad range of
alkynes studied rivals that seen for any class of alkyne addition
reactions. While improvements in ligand structure can be envisioned
to provide further enhancements in selectivity and scope, the above
study illustrates the special role that stable carbene ligands can play
in governing catalytic reactions that are sensitive to steric controlled
regioselection.
entry
R1
R2
R3
7:8 (% yield)a
7:8 (% yield)a
1
2
3
4
5
6
7
8
9
n-Hex
c-Hex
Ph
Ph
Ph
n-Hex
Ph
Ph
Me
Me
Me
Me
Me
Me
H
n-Pr
n-Pr
n-Pr
i-Pr
Ph
c-Hexenyl
CH2OTBS
n-Hex
A, 88:12 (78)
A, 82:18 (75)
A, 84:16 (72)
A, 97:3 (85)
C, >98:2 (84)
C, 97:3 (99)
C, 93:7 (88)
C, 97:3 (82)
C, >98:2 (74)
B, 7:93 (85)
B, 5:95 (91)
B, 2:>98 (86)
B, 10:90 (89)
B, 19:81 (99)
B, 9:91 (77)
D, 15:85 (86)
D, 12:88 (71)
D, 5:95 (76)
Acknowledgment. The authors wish to acknowledge receipt
of NIH Grant GM-57014 in support of this work. G.J.S. acknowl-
edges training grant support from NIH Grant GM-007767. Mani
Raj Chaulagain is thanked for helpful discussions.
H
H
n-Hex
i-Pr
a Conditions: A: L·HX ) 6, BuLi, (t-Bu)2SiH2; B: L·HX ) 4b,
KO-t-Bu, (i-Pr)3SiH; C: L·HX ) 3b, KO-t-Bu, (i-Pr)3SiH or Et3SiH; D:
L·HX ) 5c, BuLi, Et3SiH. Ligand structures are given in Table 1.
Supporting Information Available: Full experimental details and
copies of NMR spectral data. This material is available free of charge
cedures. Coupling of phenyl propyne with benzaldehyde, as
anticipated, provided regioisomer 7 with high selectivity under
standard conditions with ligand 3b (IMes) (entry 5). However, the
use of ligand 4 (SIPr) reverses selectivity, favoring regioisomer 8
with 81:19 regioselectivity. We next examined a conjugated enyne,
knowing that this substrate class is one of the most biased alkyne
classes in reductive couplings.3d-f,6 Standard coupling with ligand
3b (IMes) provided highly selective coupling at the aliphatic
substituted alkyne terminus to produce isomer 7 as anticipated (entry
6). However, the use of ligand 4 (SIPr) cleanly reversed selectivity,
providing regioisomer 8 with excellent regiocontrol. Finally, three
different terminal alkyne-aldehyde combinations were examined
(entries 7-9). As anticipated, standard couplings with ligand 3b
(IMes) cleanly and selectively provided the trans-1,2-disubstitution
pattern (isomer 7). Unfortunately, this bias could not be overcome
with ligand 4 (SIPr), and isomers 7 and 8 were obtained with poor
regiocontrol. However the use of ligand 5c provided an important
breakthrough, providing the 1,1-disubstitution pattern (isomer 8)
with excellent regiocontrol, ranging from 12:88 to 5:95 for the three
examples studied.11
References
(1) (a) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. (b) Montgomery,
J.; Sormunen. G. J. In Metal Catalyzed ReductiVe C-C Bond Formation:
A Departure from Preformed Organometallic Reagents; Krische, M. J.,
Ed.; Springer: Berlin, 2007; Vol. 279, pp 1-23. (c) Moslin, R. M.; Miller-
Moslin, K.; Jamison, T. F. Chem. Commun. 2007, 4441. (d) Skucas, E.;
Ngai, M.-Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40,
1394. (e) Bower, J. F.; Kim, I. S.; Patman, R. L.; Krische, M. J. Angew.
Chem., Int. Ed. 2009, 48, 34. (f) Perez, L. J.; Micalizio, G. C. Synthesis
2008, 627. (g) Oppolzer, W.; Radinov, R. N. J. Am. Chem. Soc. 1993,
115, 1593. (h) Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35, 5197. (i)
Kerrigan, M. H.; Jeon, S.-J.; Chen, Y. K.; Salvi, L.; Carroll, P. J.; Walsh,
P. J. J. Am. Chem. Soc. 2009, 131, 8434.
(2) For an overview of regiocontrol strategies: Reichard, H. A.; McLaughlin,
M.; Chen, M. Z.; Micalizio, G. C. Eur. J. Org. Chem. 2010, 391.
(3) (a) Many examples with aromatic, terminal, and silyl alkynes are described
in ref 1. For ynamides: (b) Saito, N.; Katayama, T.; Sato, Y. Org. Lett.
2008, 10, 3829. For diynes: (c) Huddleston, R. R.; Jang, H. Y.; Krische,
M. J. J. Am. Chem. Soc. 2003, 125, 11488. For enynes: (d) Mahandru,
G. M.; Liu, G.; Montgomery, J. J. Am. Chem. Soc. 2004, 126, 3698. (e)
Miller, K. M.; Luanphaisarnnont, T.; Molinaro, C.; Jamison, T. F. J. Am.
Chem. Soc. 2004, 126, 4130. (f) Jang, H. Y.; Huddleston, R. R.; Krische,
M. J. J. Am. Chem. Soc. 2004, 126, 4664.
(4) (a) For ligand-switchable directing effects: Miller, K. M.; Jamison, T. F.
J. Am. Chem. Soc. 2004, 126, 15342. (b) Bahadoor, A. B.; Flyer, A.;
Micalizio, G. C. J. Am. Chem. Soc. 2005, 127, 3694. (c) Bahadoor, A. B;
Micalizio, G. C. Org. Lett. 2006, 8, 1181.
(5) (a) Malik, H. A.; Chaulagain, M. R.; Montgomery, J. Org. Lett. 2009, 11,
5734. (b) Knapp-Reed, B.; Mahandru, G. M.; Montgomery, J. J. Am. Chem.
Soc. 2005, 127, 13156. (c) Chaulagain, M. R.; Sormunen, G. J.; Mont-
gomery, J. J. Am. Chem. Soc. 2007, 129, 9568. (d) Oblinger, E.;
Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065.
The simple steric model depicted (Figure 1), wherein reorienta-
tion of the alkyne in π-complexes 9 and 10 ultimately governs
(6) (a) Liu, P.; McCarren, P.; Cheong, P. H. Y.; Jamison, T. F.; Houk, K. N.
J. Am. Chem. Soc. 2010, 132, 2050. (b) Huang, W. S.; Chan, J.; Jamison,
T. F. Org. Lett. 2000, 2, 4221.
(7) For regioselectivity in imine-alkyne couplings: Barchuk, A.; Ngai, M. Y.;
Krische, M. J. J. Am. Chem. Soc. 2007, 129, 8432.
Figure 1. Ligand steric control of regiochemistry.
(8) (a) Lavallo, V.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G.
Science 2006, 312, 722. (b) Kuchenbeiser, G.; Donnadieu, B.; Bertrand,
G. J. Organomet. Chem. 2008, 693, 899. (c) Schoeller, W. W.; Frey, G. D.;
Bertrand, G. Chem.sEur. J. 2008, 14, 4711.
(9) Ligand 5c is available as the racemate by the procedure employed. (a) For
development of the general structural motif: Funk, T. W.; Berlin, J. M.;
Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 1840. (b) For the synthesis of
a precursor of 5c: Mercer, G. J.; Sturdy, M.; Jensen, D. R.; Sigman, M. S.
Tetrahedron 2005, 61, 6418.
(10) For the role of base structure in deprotonation of 6: Lavallo, V.; Ishida,
Y.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2006, 45, 6652.
(11) For alternate access to the 1,1-disubstituted isomer: Takai, K.; Sakamoto,
S.; Isshiki, T.; Kokumai, T. Tetrahedron 2006, 62, 7534.
regiochemistry, provides a possible rationale for the observed
regiochemical outcome.12 This model had previously been presented
as part of a synergistic picture to explain how ligand size effects
supplement inherent substrate biases.5a However, the current study
illustrates that, with careful optimization of ligand structure, the
impact of ligand size effects is substantial and can override
substrate-derived influences with a broad range of both biased and
unbiased alkynes.
(12) For discussions of ligand size effects: (a) Tekavec, T. N.; Arif, A. M.;
Louie, J. Tetrahedron 2004, 60, 7431. (b) Dorta, R.; Stevens, E. D.; Scott,
N. M.; Costabile, C.; Cavallo, L.; Hoff, C. D.; Nolan, S. P. J. Am. Chem.
Soc. 2005, 127, 2485. (c) Ragone, F.; Poater, A.; Cavallo, L. J. Am. Chem.
Soc. 2010, 132, 4249.
In summary, the complementary use of cyclopropenylidene
ligands and highly hindered N-heterocyclic carbene ligands provides
dramatic regiochemical reversal in nickel-catalyzed aldehyde-alkyne
reductive couplings. The participation of relatively unbiased internal
alkynes or strongly biased terminal alkynes, aryl alkynes, and
JA102262V
9
J. AM. CHEM. SOC. VOL. 132, NO. 18, 2010 6305