Organic & Biomolecular Chemistry
Paper
9 T.-S. Mei, H. H. Pater and M. S. Sigman, Nature, 2014, 508,
340.
10 (a) A. L. Gottumukkala, J. Suljagic, K. Matcha, J. G. de Vries
and A. J. Minnaard, ChemSusChem, 2013, 6, 1636; (b) For a
similar transformation see: S. Lin and X. Lu, Org. Lett.,
2010, 12, 2536.
11 The use of 7 eq. of Michael acceptor resulted from the
optimization of the conditions for the enantioselective
transformation (vide infra). Though not ideal, the enone is
significantly cheaper than the boronic acids and could be
easily retrieved in pure form by flash chromatography.
12 Undesired Pd-catalyzed homo-coupling as a side-product is
excess of boronic acid see: (a) Y. Takaya, M. Ogasawara and
T. Hayashi, J. Am. Chem. Soc., 1998, 120, 5579. For protode-
boronation suppression by temperature lowering see:
(b) T. Hayashi, M. Takahashi, Y. Takaya and M. Ogasawara,
J. Am. Chem. Soc., 2002, 124, 5052; In our catalytic system
an excess of arylboronic acid leads to significant biaryl for-
mation. This product, in some cases, proved to be very
difficult to separate from the desired Michael adduct. Low-
ering the reaction temperature led to significant retar-
dation of the catalytic process.
18 A. Matsuo, S. Yuki and M. Nakayama, J. Chem. Soc., Perkin
Trans., 1986, 701.
mentioned in: (a) G. A. Molander and B. Biolatto, J. Org. 19 M. Toyota, T. Kinugawa and Y. Asakawa, Phytochemistry,
Chem., 2003, 68, 4302; (b) A. J. J. Lennox and G. C. Lloyd- 1994, 37, 859.
Jones, Isr. J. Chem., 2010, 50, 664; (c) A. J. J. Lennox and 20 Y. Fukuyama, Y. Kiriyama and M. Kodama, Tetrahedron
G. C. Lloyd-Jones, Chem. Soc. Rev., 2014, 43, 412. Lett., 1996, 37, 1261.
13 Homo-coupling suppression by using an excess of boronic 21 Asymmetric total
syntheses
of
herbertenediol:
acid is mentioned in: M. S. Wong and X. L. Zhang, Tetra-
hedron Lett., 2001, 42, 4087.
14 J. C. Holder, L. Zou, A. N. Marziale, P. Liu, Y. Lan, M. Gatti,
K. Kikushima, K. N. Houk and B. M. Stoltz, J. Am. Chem.
Soc., 2013, 135, 14996.
(a) A. P. Degnan and A. I. Meyers, J. Am. Chem. Soc., 1999,
121, 2762; (b) G. Bringmann, T. Pabst, P. Henschel,
J. Kraus, K. Peters, E.-M. Peters, D. S. Rycroft and
J. D. Connolly, J. Am. Chem. Soc., 2000, 122, 9127;
(c) Y. Fukuyama, K. Matsumoto, Y. Tonoi, R. Yokoyama,
H. Takahashi, H. Minami, H. Okazaki and Y. Mitsumoto,
Tetrahedron, 2001, 57, 7127; (d) A. Abad, C. Agulló,
A. C. Cuñat, D. Jiménez and R. H. Perni, Tetrahedron, 2001,
57, 9727; (e) A.-M. Zhang and G.-Q. Lin, Chin. J. Chem.,
2001, 19, 1245; (f) Y. Kita, J. Futamura, Y. Ohba,
Y. Sawama, J. K. Ganesh and H. Fujioka, J. Org. Chem.,
2003, 68, 5917; (g) Y. Kita, J. Futamura, Y. Ohba,
Y. Sawama, J. K. Ganesh and H. Fujioka, Tetrahedron Lett.,
2003, 44, 411; (h) S. Acherar, G. Audran, F. Fotiadu and
H. Monti, Eur. J. Org. Chem., 2004, 5092. For racemic synth-
eses see: (i) Y. Fukuyama, Y. Kiriyama and M. Kodama,
Tetrahedron Lett., 1996, 37, 1261; ( j) P. D. Gupta, A. Pal,
A. Roy and D. Mukherjee, Tetrahedron Lett., 2000, 41, 7563;
(k) Y. Fukuyama, K. Matsumoto, Y. Tonoi, R. Yokoyama,
H. Takahashi, H. Minami, H. Okazaki and Y. Mitsumoto,
Tetrahedron, 2001, 57, 7127; (l) A. Srikrishna and M. S. Rao,
Tetrahedron Lett., 2001, 42, 5781; (m) A. Srikrishna and
M. S. Rao, Synlett, 2002, 340; (n) A. Srikrishna and
G. Satyanarayana, Tetrahedron, 2006, 62, 2892.
15 The silver salt was changed to get the same counter-ion as
reported by Stoltz et al. (see ref. 6 and 14).
16 For general remarks on protodeboronation (a) D. G. Hall,
in Boronic Acids: Preparation and Applications in Organic Syn-
thesis, Medicine and Materials – Second Completely Revised
Edition, ed. D. G. Hall, Wiley-VCH, Weinheim, 2011, ch. 1;
(b) See ref. 12b. For specific types of protodeboronation
reactions
see:
(1)
Pd-catalyzed
protodeboronation:
(c) H. G. Kuivila, J. F. Reuwer Jr. and J. A. Mangravite, J. Am.
Chem. Soc., 1964, 86, 2666 (2) Ag-catalyzed protodeborona-
tion: (d) A. Michaelis and P. Becker, Chem. Ber., 1882, 15,
180; (e) W. Seaman and J. R. Johnson, J. Am. Chem. Soc.,
1931, 53, 711; (f) J. R. Johnson, M. G. van Campen Jr. and
O. Grummitt, J. Am. Chem. Soc., 1938, 60, 111;
(g) H. G. Kuivila, J. F. Reuwer Jr. and J. A. Mangravite,
J. Am. Chem. Soc., 1964, 86, 2666; (h) C. Pourbaix,
F. Carreaux, B. Carboni and H. Deleuze, Chem. Commun.,
2000, 1275; (3) Heat induced protodeboronation:
(i) M. A. Beckett, R. J. Gilmore and K. Idrees, J. Organomet.
Chem., 1993, 455, 47; ( j) C.-Y. Lee, S.-J. Ahn and 22 H. E. Zimmerman and R. D. Little, J. Am. Chem. Soc., 1974,
C.-H. Cheon, J. Org. Chem., 2013, 78, 12154; (4) Fluoride 96, 4623.
mediated protodeboronation: (k) S. Nave, R. P. Sonawane, 23 K. C. Nicolaou, T. Montagnon, P. S. Baran and Y.-L. Zhong,
T. G. Elford and V. K. Aggarwal, J. Am. Chem. Soc., 2010, J. Am. Chem. Soc., 2002, 124, 2245.
132, 17096; (l) M. J. Hesse, C. P. Butts, C. L. Willis and 24 K. C. Nicolaou, T. Montagnon and P. S. Baran, Angew.
V. K. Aggarwal, Angew. Chem., Int. Ed., 2012, 51, 12444; (5) Chem., Int. Ed., 2002, 41, 1386.
Acid-catalyzed protodeboronation: (m) H. G. Kuivila and 25 Over-oxidation was observed mainly in the form of benzylic
K. V. Nahabedian, J. Am. Chem. Soc., 1961, 83, 2159; oxidation.
(n) H. G. Kuivila and K. V. Nahabedian, J. Am. Chem. Soc., 26 T. Diao, T. J. Wadzinski and S. S. Stahl, Chem. Sci., 2012, 3,
1961, 83, 2164; (o) K. V. Nahabedian and H. G. Kuivila, 887.
J. Am. Chem. Soc., 1961, 83, 2167; (6) Protodeboronation by 27 A. Srikrishna and P. C. Ravikumar, Tetrahedron, 2006, 62,
hydrolysis: (p) A. D. Ainley and F. Challenger, J. Chem. Soc.,
1930, 2171.
17 For general strategies to mitigate protodeboronation, see
ref. 12b; For protodeboronation suppression by addition of
9393.
28 (a) D. H. R. Barton, D. A. J. Ives and B. R. Thomas, J. Chem.
Soc., 1955, 2056; (b) D. H. R. Barton, D. A. J. Ives and
B. R. Thomas, J. Chem. Soc., 1954, 903.
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem., 2014, 12, 5883–5890 | 5889