J Incl Phenom Macrocycl Chem (2010) 66:209–212
211
8. Lee, C.H., Lee, J.S., Na, H.K., Yoon, D.W., Miyaji, H., Cho,
W.S., Sessler, J.L.: Cis- and trans-strapped calix[4]pyrroles
bearing phthalamide linkers: synthesis and anion-binding prop-
erties. J. Org. Chem. 70, 2067–2074 (2005)
9. Miyaji, H., Kim, H.K., Sim, E.K., Lee, C.K., Cho, W.S., Sessler,
J.L., Lee, C.H.: Coumarin-strapped calix[4]pyrrole: a fluorogenic
anion receptor modulated by cation and anion binding. J. Am.
Chem. Soc. 127, 12510–12512 (2005)
10. Lee, C.H., Na, H.K., Yoon, D.W., Cho, W.S., Lynch, V., Sessler,
J.L.: Single side strapping: a new approach to fine tuning the
anion recognition properties of calix[4]pyrroles. J. Am. Chem.
Soc. 125, 7301–7306 (2003)
11. Yoon, D.W., Hwang, H., Lee, C.H.: Synthesis of a strapped
calix[4]pyrrole: structure and anion binding properties. Angew.
Chem. Int. Ed. 41, 1757–1759 (2002)
12. Yoon, D.W., Gross, D.E., Lynch, V.M., Sessler, J.L., Hay, B.P.,
Lee, C.H.: Benzene-, pyrrole-, and furan-containing diametrically
strapped calix[4]pyrroles—an experimental and theoretical study
of hydrogen-bonding effects in chloride anion recognition.
Angew. Chem. Int. Ed. 47, 5038–5042 (2008)
13. Yoon, D.W., Gross, D.E., Lynch, V.M., Lee, C.H., Bennett, P.C.,
Sessler, J.L.: Real-time determination of chloride anion concen-
tration in aqueous-DMSO using a pyrrole-strapped calixpyrrole
anion receptor. Chem. Commun. 1109–1111 (2009)
14. Yoo, J., Kim, M.S., Hong, S.J., Sessler, J.L., Lee, C.H.: Selective
sensing of anions with calix[4]pyrroles strapped with chromo-
genic dipyrrolylquinoxalines. J. Org. Chem. 74, 1065–1069
(2009)
15. Fisher, M.G., Gale, P.A., Hiscock, J.R., Hursthouse, M.B., Light,
M.E., Schmidtchen, F.P., Tong, C.C.: 1,2,3-Triazole-strapped
calix[4]pyrrole: a new membrane transporter for chloride. Chem.
Commun. 3017–3019 (2009)
16. Kuswandi, B., Nuriman, Verboom, W., Reinhoudt, D.N.: Tripo-
dal receptors for cation and anion sensors. Sensors 6, 978–1017
(2006)
Fig. 2 1H NMR titration profiles of receptor 2 (8.96 mM) with
various anions in CDCl3. The chemical shift change of the pyrrole
N–H was plotted against anion concentration. In the case of the
fluoride anion, the NH signal was broadened after *5 equivalents of
anion were added
In conclusion, pyrrole-based tripodal for anion receptor
attached on the upper rim of benzene scaffold was syn-
thesized. Although the poor interaction abilities were
observed, the receptor 2 showed higher affinity toward
acetate anion over other anions. We are currently focused
on the functionalization of appended pyrroles for enhanced
anion selectivity and sensitivity.
17. Garcia-Acosta, B., Martinez-Manez, R., Ros-Lis, J.V., Sancenon,
F., Soto, J.: Discrimination between x-amino acids with chromo-
genic acyclic tripodal receptors functionalized with stilbazolium
dyes. Tetrahedron Lett. 49, 1997–2001 (2008)
18. Ahn, K.H., Ku, H.Y., Kim, Y., Kim, S.G., Kim, Y.K., Son, H.S.,
Ku, J.K.: Fluorescence sensing of ammonium and organoam-
monium ions with tripodal oxazoline receptors. Org. Lett. 5,
1419–1422 (2003)
19. Kim, Y.K., Ha, J., Cha, G.S., Ahn, K.H.: Synthesis of tripodal
trifluoroacetophenone derivatives and their evaluation as ion-
selective electrode membranes. Bull. Korean Chem. Soc. 23,
1420–1424 (2002)
20. Ihm, H., Yun, S., Kim, H.G., Kim, J.K., Kim, K.S.: Tripodal
nitro-imidazolium receptor for anion binding driven by (C-
H)?ÁÁÁX- hydrogen bonds. Org. Lett. 4, 2897–2900 (2002)
21. Sato, K., Arai, S., Yamagishi, T.: A new tripodal anion receptor
with C–HÁÁÁX- hydrogen bonding. Tetrahedron 40, 5219–5222
(1999)
Acknowledgments This work was supported by the grant from
Korea Research Foundation (C00477) and BK21. The Vascular
System Research Center (VSRC) at KNU is acknowledged for
support.
References
1. Sessler, J.L., Gale, P.A., Cho, W.: Anion Receptor Chemistry.
Monographs in Supramolecular Chemistry. Royal Society of
Chemistry (2006)
2. Steed, J.W., Atwood, J.L. (eds.): Supramolecular Chemistry. John
Wiley & Sons, West Sussex, UK (2000)
3. Gale, P.A.: Anion receptor chemistry: highlights from 1999.
Coord. Chem. Rev. 213, 79–128 (2001)
4. Gale, P.A.: Anion coordination and anion-directed assembly:
highlights from 1997 and 1998. Coord. Chem. Rev. 199, 181–233
(2000)
5. Beer, P.B., Gale, P.A.: Anion recognition and sensing: the state of
the art and future perspectives. Angew. Chem. Int. Ed. 40, 486–
516 (2001)
6. Lee, C.H., Miyaji, H., Yoon, D.W., Sessler, J.L.: Strapped and other
topographically nonplanar calixpyrrole analogues. Improved anion
receptors. Chem. Commun. 24–35 (2008)
7. Miyaji, H., Hong, S.J., Jeong, S.D., Yoon, D.W., Na, H.K.,
Hong, J., Ham, S., Sessler, J.L., Lee, C.H.: A binol-strapped
calix[4]pyrrole as a model chirogenic receptor for the enantiose-
lective recognition of carboxylate anions. Angew. Chem. Int. Ed.
46, 2508–2511 (2007)
22. Yin, Z., Zhang, Y., He, J., Cheng, J.P.: A new tripodal anion
receptor with selective binding for H2PO4 and F- ions. Tetra-
hedron 62, 765–770 (2006)
-
23. Schmuck, C., Schwegmann, M.: A molecular flytrap for the
selective binding of citrate and other tricarboxylates in water.
J. Am. Chem. Soc. 127, 3373–3379 (2005)
24. Zyryanov, G.V., Palacios, M.A., Anzenbacher Jr., P.: Rational
design of a fluorescence-turn-on sensor array for phosphates in
blood serum. Angew. Chem. Int. Ed. 46, 7849–7852 (2007)
25. Yadav, J.S., Reddy, B.V.S., Reddy, P.M., Srinivas, C.: Zinc-
mediated Barbier reactions of pyrrole and indoles: a new method
for the alkylation of pyrrole and indoles. Tetrahedron Lett. 43,
5185–5187 (2002)
123